Skip to main content

Sampling Community Structure in Dynamic Social Networks

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

When studying dynamic networks, it is often of interest to understand how the community structure of the network changes. However, before studying the community structure of dynamic social networks, one must first collect appropriate network data. In this paper we present a network sampling technique to crawl the community structure of dynamic networks when there is a limitation on the number of nodes that can be queried. The process begins by obtaining a sample for the first time step. In subsequent time steps, the crawling process is guided by community structure discoveries made in the past. Experiments conducted on the proposed approach and certain baseline techniques reveal the proposed approach has at least 35% performance increase in cases when the total query budget is fixed over the entire period and at least 8% increase in cases when the query budget is fixed per time step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This model requires a number of parameters. We set \(k = 20, nBVertices = 2000, nbTimestamps = 10, prMicro = 0.2, prMerge = 0.4, removeVertices = 0.4, prSplit = 0.4, prChange = 0.4, addBetweenEdges = 0.2, addVertices = 0.1, removeBetweenEdges = 0.4, removeWithinEdges = 0.1, updateAttributes = 0.1\). For Syn2, the same settings were maintained with modification to the following: prMicro = 0.5, addBetweenEdges = 0.5, removeBetweenEdges = 0.9, and k = 24.

References

  1. Twitter developer documentation. https://dev.twitter.com/rest/reference/get/followers/ids. Accessed 16 Aug 2017

  2. Alvari, H., Hajibagheri, A., Sukthankar, G., Lakkaraju, K.: Identifying community structures in dynamic networks. Soc. Netw. Anal. Min. 6(1), 77 (2016)

    Article  Google Scholar 

  3. Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 6(3), 115–135 (2016)

    Google Scholar 

  4. Benyahia, O., Largeron, C., Jeudy, B., Zaïane, O.R.: DANCer: dynamic attributed network with community structure generator. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 41–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_9

    Chapter  Google Scholar 

  5. Blenn, N., Doerr, C., Van Kester, B., Van Mieghem, P.: Crawling and detecting community structure in online social networks using local information. In: Bestak, R., Kencl, L., Li, L.E., Widmer, J., Yin, H. (eds.) NETWORKING 2012. LNCS, vol. 7289, pp. 56–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30045-5_5

    Chapter  Google Scholar 

  6. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theor. Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  7. Chen, Y., Qiu, X.: Detecting community structures in social networks with particle swarm optimization. In: Su, J., Zhao, B., Sun, Z., Wang, X., Wang, F., Xu, K. (eds.) Frontiers in Internet Technologies. CCIS, vol. 401, pp. 266–275. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53959-6_24

    Chapter  Google Scholar 

  8. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  9. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  10. Lin, Y.-R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 685–694. ACM (2008)

    Google Scholar 

  11. Lu, X., Phan, T.Q., Bressan, S.: Incremental algorithms for sampling dynamic graphs. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp. 327–341. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40285-2_29

    Chapter  Google Scholar 

  12. Maiya, A.S., Berger-Wolf, T.Y.: Sampling community structure. In: Proceedings of the 19th International Conference on World Wide Web, pp. 701–710. ACM (2010)

    Google Scholar 

  13. Nguyen, N.P., Dinh, T.N., Xuan, Y., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: Proceedings of the 2011 IEEE International Conference on Computer Communications, pp. 2282–2290. IEEE (2011)

    Google Scholar 

  14. Salehi, M., Rabiee, H.R., Rajabi, A.: Sampling from complex networks with high community structures. Chaos: Interdisc. J. Nonlinear Sci. 22(2), 023126 (2012)

    Article  MathSciNet  Google Scholar 

  15. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 687–696. ACM (2007)

    Google Scholar 

  16. Thakur, G.S., Tiwari, R., Thai, M.T., Chen, S.-S., Dress, A.W.M.: Detection of local community structures in complex dynamic networks with random walks. IET Syst. Biol. 3(4), 266–278 (2009)

    Article  Google Scholar 

  17. Wang, C.-D., Lai, J.-H., Philip, S.Y.: Neiwalk: community discovery in dynamic content-based networks. IEEE Trans. Knowl. Data Eng. 26(7), 1734–1748 (2014)

    Article  Google Scholar 

  18. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1151–1156. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humphrey Mensah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mensah, H., Soundarajan, S. (2018). Sampling Community Structure in Dynamic Social Networks. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics