Skip to main content

Biology and Ecophysiology of Mediterranean Cold–Water Corals

  • Chapter
  • First Online:

Part of the book series: Coral Reefs of the World ((CORW,volume 9))

Abstract

Cold-water coral ecosystems represent an important and diverse benthic community in the Mediterranean Sea. Although the distribution of cold-water corals, as well as their diversity, has started to be well studied, little is known about the effects of environmental changes on the physiology of these corals. This chapter presents the state of knowledge on the rates of calcification, respiration, feeding, mucus production and reproduction of the different Mediterranean species under their normal living conditions, and discusses the effects of climate change on the corals’ physiology. Our review indicates the need for further investigations, especially on the calcification processes, as well as the natural food sources available in the deep for these corals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addamo AM, Reimer JD, Taviani M, et al (2012) Desmophyllum dianthus (Esper, 1794) in the Scleractinian phylogeny and its intraspecific diversity. PLoS One 7:1–9

    Article  CAS  Google Scholar 

  • Ainsworth TD, Hoegh-Guldberg O (2009) Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquat Biol 4:289–296

    Article  Google Scholar 

  • Allemand D, Furla P, Bénazet-Tambutté S (1998) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Bot Rev Can Bot 76:925–941

    Article  CAS  Google Scholar 

  • Ambariyanto, Hoegh-Guldberg O (1999) Net uptake of dissolved free amino acids by the giant clam, Tridacna maxima: alternative sources of energy and nitrogen? Coral Reefs 18:91–96

    Article  Google Scholar 

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67

    Article  Google Scholar 

  • Anthony KRN, Connolly SR, Willis BR (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429

    Article  Google Scholar 

  • Ayre DJ, Resing JM (1986) Sexual and asexual production of planulae in reef corals. Mar Biol 90:187–190

    Article  Google Scholar 

  • Baillon S, Hamel JF, Wareham VE, et al (2012) Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ 10:351–356

    Article  Google Scholar 

  • Baussant T, Nilsen M, Ravagnan E, et al (2017) Physiological responses and lipid storage of the coral Lophelia pertusa at varying food density. J Toxicol Environ Health A 80:266–284

    Article  CAS  PubMed  Google Scholar 

  • Bell N, Smith J (1999) Coral growing on North Sea oil rigs. Nature 402:601

    Article  CAS  Google Scholar 

  • Bethoux JP, Gentili B, Raunet J, et al (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Article  Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL, et al (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522

    Article  CAS  Google Scholar 

  • Brito A, Ocaña O (2004) Corales de las islas Canarias. Antozoos con esqueleto de los fondos litorales y profundos. Francisco Lemus Editor, La Laguna, 475 pp

    Google Scholar 

  • Brooke SD (2002) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa from the South East Florida Shelf. PhD thesis, School of Ocean and Earth Science, Southampton Oceanography Centre, Southampton, p 160

    Google Scholar 

  • Brooke S, Järnegren J (2013) Reproductive periodicity of the deep-water scleractinian coral, Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153

    Article  Google Scholar 

  • Brooke S, Young CM (2003) Reproductive ecology of a deep-water scleractinian coral, Oculina varicosa, from the southeast Florida shelf. Cont Shelf Res 23:847–858

    Article  Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–675

    Article  Google Scholar 

  • Brooke S, Young CM (2009) Direct measurements of in situ survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Progr Ser 397:153–161

    Google Scholar 

  • Brooke S, Holmes M, Young CM (2009) Effects of sediment on two morphotypes of Lophelia pertusa from the Gulf of Mexico. Mar Ecol Progr Ser 390:137–144

    Article  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Progr Ser 296:291–309

    Article  CAS  Google Scholar 

  • Burgess S, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 701–713

    Chapter  Google Scholar 

  • Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93

    Article  Google Scholar 

  • Calvo E, Simo R, Coma R, et al (2011) Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Clim Res 50:1–29

    Article  Google Scholar 

  • Carlier A, Le Guilloux E, Olu K, et al (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Progr Ser 397:125–137

    Article  CAS  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, et al (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476

    Article  Google Scholar 

  • Clausen CD, Roth AA (1975) Estimation of coral growth-rates from laboratory 45Ca-incorporation rates. Mar Biol 33:85–91

    Article  CAS  Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Article  Google Scholar 

  • Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Bio 143:209–216

    Article  Google Scholar 

  • Coll M, Piroddi C, Steenbeek J, et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns and threats. PLoS One 5:e11842. https://doi.org/10.1371/journal.pone.0011842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coma R, Ribes M, Serrano E, et al (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci U S A 106:6176–6181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Cunha A, Almeida A, Coelho F, et al (2010) Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Appl Microbiol Biotechnol 13:978–984

    Google Scholar 

  • Dahl MP, Pereyra RT, Lundälv T, et al (2012) Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs 31:1135–1148

    Article  Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS, et al (2009) Down-welling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54:620–629

    Article  Google Scholar 

  • Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62:175–180

    Article  Google Scholar 

  • Di Geronimo I, Messina C, Rosso A, et al (2005) Enhanced biodiversity in the deep: early Pleistocene coral communities from Southern Italy. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 61–86

    Chapter  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Dodds LA, Black KD, Orr H, et al (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Mar Ecol Progr Ser 397:113–124

    Article  CAS  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Progr Ser 277:13–23

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Bergman EM, et al (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81:449–467

    Google Scholar 

  • Duineveld GCA, Jeffreys RM, Lavaleye MSS, et al (2012) Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar Ecol Progr Ser 444:97–115

    Article  Google Scholar 

  • Duncan PM (1877) On the rapidity of growth and variability of some Madreporaria on an Atlantic cable, with remarks upon the rate of accumulation of foraminiferal deposits. Ann Mag Nat Hist 20:361–365

    Article  Google Scholar 

  • Edmondson CH (1928) The ecology of an Hawaiian coral reef. Bull Bernice P Bishop Mus 45:1–64

    Google Scholar 

  • Edmunds PJ (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350–364

    Article  PubMed  Google Scholar 

  • Erez J (1978) Vital effect on stable-isotope composition seen in Foraminifera and coral skeletons. Nature 273:199–202

    Article  CAS  Google Scholar 

  • Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301

    Article  Google Scholar 

  • Fadlallah YH (1983) Sexual reproduction, development and larval biology in scleractinian corals: a review. Coral Reefs 2:129–150

    Article  Google Scholar 

  • Ferrier-Pagès C, Reynaud S, Allemand D (2012) Shallow water scleractinian corals of the Mediterranean Sea. In: Stambler N (ed) Life in the Mediterranean Sea: a look at habitat changes. Nova Science Publishers, New York, pp 355–389

    Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Cawet G, et al (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Progr Ser 172:265–274

    Article  Google Scholar 

  • Ferrier-Pagès C, Gattuso JP, Dallot S, et al (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113

    Article  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, et al (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438. https://doi.org/10.4319/lo.2011.56.4.1429

    Article  Google Scholar 

  • Findlay HS, Artioli Y, Moreno N, et al (2013) Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming. Glob Chang Biol 19:2708–2719. https://doi.org/10.1111/gcb.12256

    Article  PubMed  Google Scholar 

  • Flint H, Waller R, Tyler P (2007) Reproductive ecology of Fungiacyathus marenzelleri from 4100 m depth in the Northeast Pacific Ocean. Mar Biol 151:843–849

    Article  Google Scholar 

  • Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18:843–853

    Article  Google Scholar 

  • Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia pertusa around the Faroe Islands and the relation to internal tidal mixing. Sarsia 77:157–171

    Article  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, et al (2004) Cold-water coral reefs. UNEP-WCMC, Cambridge, UK, 86 pp

    Google Scholar 

  • Freiwald A, Beuck L, Ruggeberg A, et al (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74

    Article  Google Scholar 

  • Gass SE, Roberts JM (2003) The environmental sensitivity of cold-water corals. Erlanger Geol Abh (Special Issue 4):109

    Google Scholar 

  • Gateno D, Rinkevich B (2003) Coral polyp budding is probably promoted by a canalized ratio of two morphometric fields. Mar Biol 142:971–973

    Article  Google Scholar 

  • Gattuso JP, Frankignoulle M, Bourge I, et al (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Chang 18:37–46

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, et al (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603. https://doi.org/10.1029/2006GL028554

    Article  CAS  Google Scholar 

  • Georgian SE, Dupont S, Kurman M, et al (2016) Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar Ecol 37:1345–1359. https://doi.org/10.1111/maec.12373

    Article  Google Scholar 

  • Goffredo S, Arnone S, Zaccanti F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Ecol Progr Ser 229:83–94

    Article  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull Mar Biol Lab Woods Hole 116:59–75

    Article  CAS  Google Scholar 

  • Gori A, Orejas C, Madurell T, et al (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze- Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060

    Article  Google Scholar 

  • Gori A, Reynaud S, Orejas C, et al (2014a) Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33:665–674. https://doi.org/10.1007/s00338-014-1167-9

    Article  Google Scholar 

  • Gori A, Grover R, Orejas C, et al (2014b) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Res Part 2 Top Stud Oceanogr 99:42–50. https://doi.org/10.1016/j.dsr2.2013.06.007

    Article  CAS  Google Scholar 

  • Gori A, Reynaud S, Orejas C, et al (2015) The influence of flow velocity and temperature on zooplankton capture rates by the cold-water coral Dendrophyllia cornigera. J Exp Mar Biol Ecol 466:92–97

    Article  Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige SJ, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 26855864. https://doi.org/10.7717/peerj.1606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guinotte JM, Orr JC, Cairns SS, et al (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 59–85

    Chapter  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, New York, pp 133–207

    Google Scholar 

  • Harrison PL, Babcock RC, Bull GD, et al (1984) Mass spawning in tropical reef corals. Science 223:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, et al (2013) Short term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr. https://doi.org/10.1016/j.dsr2.2013.07.005

    Article  CAS  Google Scholar 

  • Heyward AJ, Negri AP (2012) Turbulence, cleavage, and the naked embryo: a case for coral clones. Science 335:1064

    Article  CAS  PubMed  Google Scholar 

  • Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Progr Ser 7:207–226

    Article  Google Scholar 

  • Houlbrèque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166

    Article  Google Scholar 

  • Howe SA, Marshall AT (2001) Thermal compensation of metabolism in the temperate coral Plesiastrea versipora (Lamark 1816). J Exp Mar Biol Ecol 259:231–248

    Article  PubMed  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral Plesiastrea versipora (Lamarck). Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae. 1. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60:167–178

    Article  CAS  Google Scholar 

  • Johannes RE, Tepley L (1974) Examination of feeding of the reef coral Porites lobata in situ using time lapse photography. Proc 2nd Int Coral Reef Symp 1:127–131

    Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 143:201–208

    Article  Google Scholar 

  • Jones DOB, Yool A, Wei C-L, et al (2014) Global reductions in seafloor biomass in response to climate change. Glob Chang Biol 20:1861–1872. https://doi.org/10.1111/gcb.12480

    Article  PubMed  Google Scholar 

  • Kemp DW, Oakley CA, Thornhill DJ, et al (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys due to severe low-temperature stress. Glob Chang Biol 17:3468–3477

    Article  Google Scholar 

  • Kerr AM, Baird AH, Hughes TP (2010) Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B 278:75–81

    Article  PubMed  Google Scholar 

  • Khripounoff A, Caprais JC, Le Bruchec J, et al (2014) Deep cold water coral ecosystems in the Brittany submarine canyons (Northeast Atlantic): hydrodynamics, particle supply, respiration, and carbon cycling. Limnol Oceanogr 59:87–98

    Article  CAS  Google Scholar 

  • Kiriakoulakis K, Fischer E, Wolff GA, et al (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts JM (eds) Cold water corals and ecosystems. Springer, Berlin, Heidelberg, pp 715–729

    Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, et al (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, 88pp

    Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, et al (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117. https://doi.org/10.1038/ngeo100

    Article  CAS  Google Scholar 

  • LaBarbera M (1984) Feeding currents and particle capture mechanisms in suspension feeding animals. Am Zool 24:71–84

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, et al (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Larsson AI, van Oevelen D, Purser A, et al (2013) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Pollut Bull 70:176–188

    Article  CAS  PubMed  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222. https://doi.org/10.1371/journal.pone.0102222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartaud F, Pareige S, de Rafeli M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196

    Article  Google Scholar 

  • Le Danois E (1948) Les profondeurs de la mer. Payot, Paris, p 303

    Google Scholar 

  • Levas S, Grottoli AG, Schoepf V, et al (2015) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35:495–506. https://doi.org/10.1007/s00338-015-1390-z

    Article  Google Scholar 

  • Lewis JB, Price WS (1975) Feeding mechanisms and feeding strategies of Atlantic reef corals. J Zool Long 176:527–544

    Article  Google Scholar 

  • Lirman (2000) Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments. J Exp Mar Biol Ecol 255:41–57

    Article  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Google Scholar 

  • Maier C, De Kluijver A, Agis M, et al (2011) Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences 8:2609–2620

    Article  CAS  Google Scholar 

  • Maier C, Watremez P, Taviani M, et al (2012) Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc R Soc B 279:1716–1723

    Article  CAS  PubMed  Google Scholar 

  • Maier C, Schubert A, Berzunza Sànchez MM, et al (2013a) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8:e62655. https://doi.org/10.1371/journal.pone.0062655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier C, Bils F, Weinbauer MG, et al (2013b) Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences 10:5671–5680

    Article  Google Scholar 

  • Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217. https://doi.org/10.1242/jeb.127159

    Article  PubMed  Google Scholar 

  • Marbà N, Jordà G, Agusti S, et al (2015) Footprints of climate change on Mediterranean Sea biota. Front Mar Sci 2:56. https://doi.org/10.3389/fmars.2015.00056

    Article  Google Scholar 

  • Mastrototaro F, D’Onghia G, Corriero G, et al (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep-Sea Res Part 2 Top Stud Oceanogr 57:412–430

    Article  Google Scholar 

  • Mayor AG (1916) The lower temperatures at which reef-corals lose their ability to capture food. Carnegie Inst Wash Yearb 14:212

    Google Scholar 

  • McClain CR, Allen AP, Tittensor DP, et al (2012) Energetics of life on the deep seafloor. Proc Natl Acad Sci U S A 109:15366–15371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercier A, Sun Z, Hamel JF (2011) Reproductive periodicity, spawning and development of the deep-sea scleractinian coral Flabellum angulare. Mar Biol 158:371–380

    Article  Google Scholar 

  • Middelburg JJ, Mueller CE, Veuger B, et al (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5:17962. https://doi.org/10.1038/srep17962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen N, Erlenkeuser H, Killingley JS, et al (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11:163–171

    Article  Google Scholar 

  • Mora C, Wei CL, Rollo A, et al (2013) Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol 11:e1001682. https://doi.org/10.1371/journal.pbio.1001682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen PB (2001) Aquarium observations on the deepwater coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:83–104

    Article  Google Scholar 

  • Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83:433–446

    Article  Google Scholar 

  • Mortensen PB, Hovland MT, Fossa JH, et al (2001) Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK 81:581–597

    Article  Google Scholar 

  • Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low pH conditions. Water 6:59–67. https://doi.org/10.3390/w6010059

    Article  Google Scholar 

  • Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686. https://doi.org/10.1007/s00338-014-1159–9

    Article  Google Scholar 

  • Mueller CE, Larsson AI, Veuger B, et al (2014) Opportunistic feeding on various organic food sources by the cold- water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Naumann MS, Haas A, Struck U, et al (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  • Naumann MS, Orejas C, Wild C, et al (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    Article  CAS  PubMed  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749–754. https://doi.org/10.1007/s00338-013-1011-7

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41. https://doi.org/10.1016/j.dsr2.2013.05.025

    Article  CAS  Google Scholar 

  • Naumann M, Tolosa I, Taviani M, et al (2015) Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34:1165–1175

    Article  Google Scholar 

  • van Oevelen D, Duineveld GCA, Lavaleye MSS, et al (2009) The cold-water coral community as hotspot of carbon cycling on continental margins: a food web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr 54:1829–1844

    Article  Google Scholar 

  • van Oevelen D, Mueller CE, Lundälv T, et al (2016) Food selectivity and processing by the cold-water coral Lophelia pertusa. Biogeosciences 13:5789–5798

    Article  CAS  Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, et al (2009) Coldwater corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 397:37

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011a) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011b) Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical scleractinian corals. J Exp Mar Biol Ecol 405:1–5

    Article  Google Scholar 

  • Orejas C, Gori A, Rad-Menéndez C, et al (2016) The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J Exp Mar Biol Ecol 481:34–40

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. https://doi.org/10.1038/nature04095

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Van Delft S, Wahyudin Lewaru M, et al (2011) Determination of prey capture rates in the stony coral Galaxea fascicularis: a critical reconsideration of the clearance rate concept. J Mar Biol Assoc UK 1–7

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Progr Ser 300:79–89

    Article  Google Scholar 

  • Palmiéri J, Orr JC, Dutay JC, et al (2015) Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12:781–802

    Article  CAS  Google Scholar 

  • Pires DO, Silva JC, Bastos ND (2014) Reproduction of deep-sea reef-building corals from the southwestern Atlantic. Deep-Sea Res Part 2 Top Stud Oceanogr 99:51–63

    Article  Google Scholar 

  • Previati M, Scinto A, Cerrano C, et al (2010) Oxygen consumption in Mediterranean octocorals under different temperatures. J Exp Mar Biol Ecol 390:39–48

    Article  Google Scholar 

  • Purser A, Larsson AI, Thomsen L, et al (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Biol Ecol 395:55–62

    Article  Google Scholar 

  • Purser A, Orejas C, Moje A, et al (2014) The influence of flow velocity and suspended particulate concentration on net prey capture rates by the scleractinian coral Balanophyllia europaea (Scleractinia: Dendrophylliidae). J Mar Biol Assoc UK 94:687–696

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, et al (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Rice AL, Lambshead PJD (1994) Patch dynamics in the deep-sea benthos: the role of heterogenous supply of organic matter. In: Giller PS, Hildrew AG, Rafaelli DG (eds) Aquatic ecology: scale, pattern and processes. Blackwell, Oxford, pp 469–497

    Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific and the Red Sea. Mar Ecol Progr Ser 60:185–203

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2010) A nonlinear calcification response to CO2- induced ocean acidification by the temperate coral Oculina arbuscula. Coral Reefs 29:661–674

    Article  Google Scholar 

  • Riisgård HU, Larsen PS (2010) Particle capture mechanisms in suspension-feeding invertebrates. Mar Ecol Progr Ser 418:255–293

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1979) The reproduction of the Red Sea coral Stylophora pistillata. I. Gonads and planulae. Mar Ecol Progr Ser 1:133–144

    Article  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Progr Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rix L, de Goeij JM, Mueller CE, et al (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715. https://doi.org/10.1038/srep18715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rixen M, Beckers JM, Levitus S, et al (2005) The Western Mediterranean deep water: a proxy for climate change. Geophys Res Lett 32:12608

    Article  Google Scholar 

  • Roberts JM, Anderson RM (2002) A new laboratory method for monitoring deep-water coral polyp behaviour. Hydrobiologia 471:143–148

    Article  Google Scholar 

  • Roberts JM, Cairns SD (2014) Cold-water corals in a changing ocean. Curr Opin Environ Sustain 7:118–126

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, p 334

    Book  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, et al (2006) Growth and photosynthesis of two Mediterranean corals Cladocora caespitosa and Oculina patagonica under normal and elevated temperatures. J Exp Biol 209:4546–4556

    Article  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Montagna P, Aliani S, et al (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob Chang Biol 21:2238–2248

    Article  PubMed  Google Scholar 

  • Rodríguez E, Orejas C, López-González PJ, et al (2013) Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea. Mar Biol 160:67–80

    Article  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus, 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Article  Google Scholar 

  • Rosen BR, Taylor JD (1969) Reef coral from Aldabra – new mode of reproduction. Science 166:119–121

    Article  CAS  PubMed  Google Scholar 

  • Sammarco PW (1982) Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar Ecol Progr Ser 10:57–65

    Article  Google Scholar 

  • Sánchez F, Serrano A, Ballesteros MG (2009) Photogrammetric quantitative study of habitat and benthic communities of deep Cantabrian Sea hard grounds. Cont Shelf Res 29:1174–1188

    Article  Google Scholar 

  • Savini A, Vertino A, Marchese F, et al (2014) Mapping cold-water coral habitats at different scales within the Northern Ionian Sea (Central Mediterranean): an assessment of coral coverage and associated vulnerability. PLoS One 9:e87108. https://doi.org/10.1371/journal.pone.0087108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuhmacher H (1977) Ability of fungiid corals to overcome sedimentation. Proc 3rd Int Coral Reef Symp 1:503–509

    Google Scholar 

  • Sebens KP, Grace SP, Helmuth B, et al (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar Biol 131:347–360

    Article  Google Scholar 

  • Shelton G (1980) Lophelia pertusa (L.): electrical conduction and behavior in a deep-water coral. J Mar Biol Assoc UK 60:517–528

    Article  Google Scholar 

  • Shimeta J, Jumars PA (1991) Physical mechanisms and rates of particle capture by suspension feeders. Oceanogr Mar Biol A Rev 29:191–257

    Google Scholar 

  • Shimeta J, Koehl MAR (1997) Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. J Exp Mar Biol Ecol 209:47–73

    Article  Google Scholar 

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Article  Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–54

    Article  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 137–156

    Chapter  Google Scholar 

  • Thiem Ø, Ravagnan E, Fossa JH, et al (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 26:1481–1495

    Google Scholar 

  • Touratier F, Goyet C (2011) Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea. Deep-Sea Res I Oceanogr Res Pap 58:1–15. https://doi.org/10.1016/j.dsr.2010.10.002

    Article  CAS  Google Scholar 

  • Tremblay P, Naumann MS, Sikorski S, et al (2012) Experimental assessment of organic carbon fluxes in the scleractinian coral Stylophora pistillata during a thermal stress event. Mar Ecol Progr Ser 453:63–77

    Article  CAS  Google Scholar 

  • Tsounis G, Orejas C, Reynaud S, et al (2010) Prey-capture rates in four Mediterranean cold water corals. Mar Ecol Progr Ser 398:149–155

    Article  CAS  Google Scholar 

  • Tursi A, Mastrototaro F, Matarrese A, et al (2004) Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean). Chem Ecol 20:107–116

    Article  Google Scholar 

  • Tyler PA, Harvey R, Giles LA, et al (1992) Reproductive strategies and diet in deep-sea nuculanid protobranchs (Bivalvia: Nuculoidea) from the Rockall Trough. Mar Biol 114:571–580

    Article  Google Scholar 

  • Tyler PA, Gage JD, Paterson GJL, et al (1993) Dietary constraints on reproductive periodicity in two sympatric deep-sea astropectinid seastars. Mar Biol 115:267–277

    Article  Google Scholar 

  • Vargas-Yáñez M, Moya F, Garcia-Martinez MC, et al (2010) Climate change in the Western Mediterranean Sea 1900−2008. J Mar Syst 82:171–176

    Article  Google Scholar 

  • Vertino A, Stolarski J, Bosellini FR, et al (2014) Mediterranean corals through time: from miocene to present. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea: its history and present challenges. Springer, Dordrecht, pp 257–274. https://doi.org/10.1007/978-94-007-6704-1_14

    Google Scholar 

  • Waller RG (2003) The reproductive ecology of deep-water scleractinians. PhD thesis, School of Ocean and Earth Science, Southampton Oceanogr Cent

    Google Scholar 

  • Waller RG (2005) Deep water scleractinians: current knowledge of reproductive processes. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 691–700

    Chapter  Google Scholar 

  • Waller RG, Feehan KA (2013) Reproductive ecology of a polar deep-sea scleractinian, Fungiacyathus marenzelleri (Vaughan, 1906). Deep-Sea Res Part 2 Top Stud Oceanogr 92:201–2016

    Article  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deepwater, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Waller RG, Tyler PA (2011) Reproductive patterns in two deep-water solitary corals from the north-east Atlantic – Flabellum alabastrum and F. angulare (Cnidaria: Anthozoa: Scleractinia). J Mar Biol Assoc UK 91:669–675

    Article  Google Scholar 

  • Waller RG, Tyler PA, Gage JD (2002) Reproductive ecology of the deep-water scleractinian coral Fungiacyathus marenzelleri (Vaughan, 1906) in the northeast Atlantic Ocean. Coral Reefs 21:325–331

    Google Scholar 

  • Waller RG, Tyler PA, Gage JD (2005) Sexual reproduction in three hermaphroditic deep-sea Caryophyllia species (Anthozoa: Scleractinia) from the NE Atlantic Ocean. Coral Reefs 24:594. https://doi.org/10.1007/s00338-005-0031-3

    Article  Google Scholar 

  • Waller RG, Tyler PA, Smith CR (2008) Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F. curvatum and F. impensum. Deep-Sea Res Part 2 Top Stud Oceanogr 55:2527–2534

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wienberg C, Frank N, Mertens KN, et al (2010) Glacial cold-water coral growth in the Gulf of Cádiz: implications of increased palaeo-productivity. Earth Planet Sci Lett 298:405–416

    Article  CAS  Google Scholar 

  • Wijgerde T, Spijkers P, Karruppannan E, et al (2012) Water flow affects zooplankton feeding by the scleractinian coral Galaxea fascicularis on a polyp and colony level. J Mar Biol (ID 854849), 7 pp. https://doi.org/10.1155/2012/854849

    Article  Google Scholar 

  • Wild C, Rasheed M, Werner U, et al (2004) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Progr Ser 267:159–171

    Article  Google Scholar 

  • Wild C, Mayer C, Wehrmann L, et al (2008) Organic matter release by cold water corals and its implication for fauna–microbe interaction. Mar Ecol Progr Ser 372:67–75

    Article  CAS  Google Scholar 

  • Wild C, Naumann M, Niggl W, et al (2010) Carbohydrate composition of mucus released by scleractinian warm- and cold-water reef corals. Aquat Biol 10:41–45

    Article  Google Scholar 

  • Wildish D, Kristmanson D (1997) Benthic suspension feeders and flow. Cambridge University Press, Cambridge, p 409

    Book  Google Scholar 

  • Yeoh SR, Dai CF (2010) The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar Biol 157:351–359

    Article  Google Scholar 

  • Yonge CM, Nicholls AG (1931) Studies on the physiology of corals. V. On the relationship between corals and zooxanthellae. Scient Rep Gt Barrier Reef Exped 1:177–211

    Google Scholar 

  • Zetsche E-M, Baussant T, Meysman FJR, et al (2016) Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS One 11:e0146766. https://doi.org/10.1371/journal.pone.0146766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zibrowius H (1980) Les Scleractiniaires de la Méditerranée et de l’Atlantique Nord-Oriental, vol 11. Mémoires de l’Institut Océanographique, Monaco, p 284

    Google Scholar 

Cross References

  • Altuna A, Poliseno A (this volume) Taxonomy, genetics and biodiversity of Mediterranean deep-sea corals and cold-water corals

    Google Scholar 

  • Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water corals

    Google Scholar 

  • Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water corals

    Google Scholar 

  • Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesis

    Google Scholar 

  • Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidification

    Google Scholar 

  • Orejas C, Taviani M, Carreiro-Silva M, et al (this volume) Cold-water coral in aquaria: advances and challenges. A focus in the Mediterranean

    Google Scholar 

  • Otero M, Marin P (this volume) Conservation of cold-water corals in the Mediterranean: current status and future prospects for improvement

    Google Scholar 

  • Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of mediterranean cold-water corals

    Google Scholar 

  • Vertino A, Taviani M, Corselli C (this volume) Spatio-temporal distribution of Mediterranean cold-water corals

    Google Scholar 

  • Weinbauer MG, Oregiani D, Grosskurth A, et al (this volume) Diversity and biogeography of bacteria associated with the cold-water corals Lophelia pertusa and Madrepora oculata: Mediterranean Sea vs NE Atlantic

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the CYCLAMEN project funded by the TOTAL foundation (BIO_2014_091_Juin_CS-8). The authors are thankful for the comments made by the reviewers that contributed to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Reynaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reynaud, S., Ferrier-Pagès, C. (2019). Biology and Ecophysiology of Mediterranean Cold–Water Corals. In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_35

Download citation

Publish with us

Policies and ethics