Skip to main content

33 Diversity of Bacteria Associated with the Cold Water Corals Lophelia pertusa and Madrepora oculata

  • Chapter
  • First Online:
Mediterranean Cold-Water Corals: Past, Present and Future

Abstract

Recent research suggests that corals including cold-water corals harbor a diverse community of bacteria that are not only pathogens but also potential mutualists. Here we review data on bacterial community composition and diversity on the main cold-water corals framework builder species: Lophelia pertusa and Madrepora oculata. Sampling strategies such as box core, video grabs and remotely operated vehicle did not reveal strong differences between bacterial community composition as long as samples were used that looked ‘not contaminated’. However, there were strong differences of bacterial diversity between the two coral species. An analysis of bacterial community composition by pyrosequencing of L. pertusa and M. oculata revealed for the Mediterranean Sea the presence of the potential mutualists already found in the Atlantic indicating a species-specific core microbiome. The data also suggest some biogeographical differences between the Mediterranean Sea and the North Atlantic for both coral species, however, this depends on the phylogenetic levels applied. In addition, there was also indication for a shared microbiome between the Mediterranean Sea and the Atlantic. Therefore species-specific bacterial associations seem to exist, whereas the biogeographical variability can be seen as adaptation to specific environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Masters thesis available as pdf at wein@obs-vlfr.fr

References

  • Ainsworth TD, Fine M, Blackall LL, et al (2006) Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 72:3016–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An S, Couteau C, Luo F, et al (2013) Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb Ecol 66:850–860

    Article  PubMed  Google Scholar 

  • Arnaud-Haond S, Van den Beld IMJ, Becheler R, et al (2015) Two “pillars” of cold-water coral reefs along Atlantic European margins: prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res Part 2 Top Stud Oceanogr 145:110–119

    Article  Google Scholar 

  • Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Iida Y, Uthicke S, et al (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363

    Article  CAS  PubMed  Google Scholar 

  • Brooke S, Jarnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord. Nor Mar Biol 160:139–153

    Article  Google Scholar 

  • Carlier A, Le Guilloux E, Olu K, et al (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Progr Ser 397:125–137

    Article  CAS  Google Scholar 

  • Davies AJ, Duineveld GCA, Lavaleye MSS, et al (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54:620–629

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725

    Article  Google Scholar 

  • Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount coldwater coral community (Galicia Bank, NW Spain). Mar Ecol Progr Ser 277:12–23

    Article  Google Scholar 

  • Findlay HS, Artioli Y, Navas JM, et al (2013) Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming. Glob Chang Biol 19:2708–2719

    Article  PubMed  Google Scholar 

  • Gori A, Grover R, Orejas C, et al (2014) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep-Sea Res Part 2 Top Stud Oceanogr:42–50

    Article  CAS  Google Scholar 

  • Großkurth A (2007) Analysis of bacterial community composition on the cold-water coral Lophelia pertusa and antibacterial effects of coral extracts. Diploma thesis, Carl von Ossietzky Universität, Oldenburg, Germany, 93 pp

    Google Scholar 

  • Hansson L, Agis M, Maier C, et al (2009) Community composition of bacteria associated with cold-water coral Madrepora oculata: within and between colony variability. Mar Ecol Progr Ser 397:89–102

    Article  CAS  Google Scholar 

  • Harder T, Lau SCK, Dobretsov S, et al (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp. and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43:337–347

    Article  CAS  PubMed  Google Scholar 

  • Heissenberger A, Leppard GG, Herndl GJ (1996) Relationship between the intracellular integrity and the morphology of the capsular envelope in attached and free-living marine bacteria. Appl Environ Microbiol 62:4521–4528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry LA, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Res Part 1 Oceanogr Res Pap 54:654–672

    Article  Google Scholar 

  • Henry LA, Roberts JM (2017) Global biodiversity in cold-water coral reef ecosystems. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 235–256

    Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, et al (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. MBio 7:1–10

    Article  Google Scholar 

  • Hernandez-Agreda A, Gates RD, Ainsworth TC (2017) Defining the core microbiome in corals’ soup. Trends Microbiol 25:125–140

    Article  CAS  PubMed  Google Scholar 

  • Jensen S, Neufeld JD, Birkeland NK, et al (2008a) Insight into the microbial community structure of a Norwegian deep-water coral reef environment. Deep-Sea Res Part 1 Oceanogr Res Pap 55:1554–1563

    Article  Google Scholar 

  • Jensen S, Neufeld JD, Birkeland NK, et al (2008b) Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway. FEMS Microbiol Ecol 66:320–330

    Article  CAS  PubMed  Google Scholar 

  • Kellogg CA (2004) Tropical archaea: diversity associated with the surface microlayer of corals. Mar Ecol Progr Ser 273:81–88

    Article  CAS  Google Scholar 

  • Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture- independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl Environ Microbiol 73:5642–5647

    Google Scholar 

  • Kellogg C, Goldsmith D, Gray M (2017) Biogeographic comparison of Lophelia-associated bacterial communities in the western Atlantic reveals conserved core microbiome. Front Microbiol 8:1–15

    Article  Google Scholar 

  • Kiriakoulakis K, Fisher E, Wolff GA, et al (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 715–729

    Chapter  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • Kuhl M, Cohen Y, Dalsgaard T, et al (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Progr Ser 117:159–172

    Article  Google Scholar 

  • Larsson AI, Jarnegren J, Stromberg SM, et al (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9:e102222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2013) A new approach for assessing cold-water coral growth using fluorescent calcein staining. Aquat Living Resour 26:187–196

    Article  Google Scholar 

  • Lartaud F, Pareige S, de Rafelis M, et al (2014) Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res Part 2 Top Stud Oceanogr 99:64–70

    Article  Google Scholar 

  • Lartaud F, Meistertzheim AL, Peru E, et al (2017) In situ growth experiments of reef-building cold-water corals: the good, the bad and the ugly. Deep-Sea Res Part 1 Oceanogr Res Pap 121:70–78

    Article  Google Scholar 

  • Le Goff-Vitry MC, Pybus OG, Rogers D (2004) Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol 13:537–549

    Article  PubMed  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, et al (2004) The metacommunity concept: a framework for multi-scale communitgy ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Littman RA, Willis BL, Pfeffer C, et al (2009) Diversity of coral-associated bacteria differs with location but not species for three acroporids on the Great Barrier Reef. FEMS Microbiol Ecol 68:152–163

    Article  CAS  PubMed  Google Scholar 

  • Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680

    Article  CAS  Google Scholar 

  • Maier C, De Kluijver A, Agis M, et al (2011) Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences 8:1–34

    Article  Google Scholar 

  • Meistertzheim AL, Lartaud F, Arnaud-Haond S, et al (2016) Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Res Part 1 Oceanogr Res Pap 114:12–22

    Article  Google Scholar 

  • Mueller CE, Larsson AL, Veuger B, et al (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41

    Article  CAS  Google Scholar 

  • Neave M, Mitchell C, Apprill A, et al (2017) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 7:40579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neulinger SC, Jarnegren J, Ludvigsen M, et al (2008) Phenotype specific bacterial communities in the cold-water coral Lophelia pertusa (Scleractinia) and their implications for the coral’s nutrition, health, and distribution. Appl Environ Microbiol 74:7272–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neulinger SC, Gärtner A, Järnegren J, et al (2009) Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia). Appl Environ Microbiol 75:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Raina JB, Tapiolas D, Willis BL, et al (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 11:3492–3501

    Article  Google Scholar 

  • Ray JL, Töpper B, An S, et al (2012) Effect of increased pCO2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. FEMS Microbiol Ecol 82:713–723

    Article  CAS  PubMed  Google Scholar 

  • Reitner J (2005) Calcifying extracellular mucus substances (EMS) of Madrepora oculata – a first geobiological approach. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 731–744

    Chapter  Google Scholar 

  • Reshef L, Koren O, Loya Y, et al (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Progr Ser 322:1–14

    Article  CAS  Google Scholar 

  • Ritchie KB, Smith GW (1995) Preferential carbon utilization by surface bacterial communities from water mass, normal and white-band diseased Acropora cervicornis. Mol Mar Biol Biotechnol 4:345–335

    CAS  Google Scholar 

  • Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 259–263

    Chapter  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  Google Scholar 

  • Roberts JM, Davies AJ, Henry LA, et al (2009) Mingulay reef complex: an interdisciplinary study of cold-water coral habitat, hydrography and biodiversity. Mar Ecol Progr Ser 397:139–151

    Article  CAS  Google Scholar 

  • Rogers D (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef- forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Article  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, et al (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–95

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Farooq A, et al (2002) Diversity and distribution of coral- associated bacteria. Mar Ecol Progr Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, et al (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Santavy DL (1995) The diversity of microorganisms associated with marine invertebrates and their roles in the maintenance of ecosystems. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, pp 211–229

    Google Scholar 

  • Schöttner S, Hoffmann F, Wild C, et al (2009) Inter- and intra-habitat bacterial diversity associated with cold-water corals. ISME J 3:756–769

    Article  PubMed  Google Scholar 

  • Schöttner S, Wild C, Hoffmann F, et al (2012) Spatial scales of bacterial diversity in cold-water coral reef ecosystems. PLoS One 7:e3209324

    Article  Google Scholar 

  • Silveira CB, Cavalcanti GS, Walter JM, et al (2017) Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 41:575–595

    Article  CAS  PubMed  Google Scholar 

  • Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156

    Chapter  Google Scholar 

  • Turley CM, Roberts JM, Guinotte JM (2007) Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs 26:445–448

    Article  Google Scholar 

  • van Bleijsweijk JDL, Whalen C, Duineveld GCA, et al (2015) Microbial assemblages on a cold-water coral mound at the SE Rockall Bank (NE Atlantic): interactions with hydrography and topography. Biogeochemistry 12:4483–4496

    Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Weinbauer MG, Ogier J, Maier C (2012) Microbial abundance in the coelenteron and mucus of the cold-water coral Lophelia pertusa and in bottom water of the reef environment. Aquat Biol 16:209–216

    Article  Google Scholar 

  • Wild C, Huettel M, Klueter A (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70 59

    Article  CAS  PubMed  Google Scholar 

  • Wild C, Mayr C, Wehrmann L, et al (2008) Organic matter release by cold water corals and its implication for fauna-microbe interactions. Mar Ecol Progr Ser 372:67–75

    Article  CAS  Google Scholar 

  • Wild C, Naumann M, Niggl W, et al (2010) Carbohydrate composition of mucus released by scleractinian warm- and cold-water reef corals. Aquat Biol 10:41–45

    Article  Google Scholar 

  • Yakimov MM, Cappello S, Crisafi E (2005) Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 53:62–75

    Article  Google Scholar 

Cross References

  • Boavida J, Becheler R, Addamo A, et al (this volume) Past, present and future connectivity of Mediterranean cold-water corals: patterns, drivers and fate in a technically and environmentally changing world

    Google Scholar 

  • D’Onghia G (this volume) Cold-water coral as shelter, feeding and life-history critical habitats for fish species: ecological interactions and fishing impact

    Google Scholar 

  • Lartaud F, Mouchi V, Chapron L, et al (this volume) Growth patterns of Mediterranean calcifying cold-water corals

    Google Scholar 

  • Maier C, Weinbauer MG, Gattuso J-P (this volume) Fate of Mediterranean scleractinian Cold-Water Corals as a Result of Global Climate Change. A Synthesis

    Google Scholar 

  • Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidification

    Google Scholar 

  • Otero M, Marin P (this volume) Conservation of cold-water corals in the Mediterranean: current status and future prospects for improvement

    Google Scholar 

  • Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water corals

    Google Scholar 

  • Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean Sea and adjacent areas

    Google Scholar 

  • Weinbauer MG, Oregoni D, Maier C (this volume) Lophelia pertusa and Madrepora oculata: an Archaea riddle?

    Google Scholar 

Download references

Acknowledgements

We thank the captain and the crew of the RVs Pelagia and Thethys I’ for their support, as well as the supporting departments at NIOZ for coordination, data management and technical support. This research has been financed by the Dutch NWO/ALW project BIOSYS (no. 835.30.024 and 814.01.005) and the project COMP of the Foundation Prince Albert II (Monaco). This work is also a contribution to the ‘European Project on Ocean Acidification’ (EPOCA) which received funding from the European Community’s Seventh Framework Specific Programme (PP7/2007-2013) under grant agreement no. 211384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus G. Weinbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinbauer, M.G. et al. (2019). 33 Diversity of Bacteria Associated with the Cold Water Corals Lophelia pertusa and Madrepora oculata . In: Orejas, C., Jiménez, C. (eds) Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-91608-8_33

Download citation

Publish with us

Policies and ethics