Skip to main content

Resuscitation Fluid with Drag Reducing Polymer Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1072))

Abstract

Traumatic brain injury (TBI) is frequently accompanied by hemorrhagic shock (HS) which significantly worsens morbidity and mortality. Existing resuscitation fluids (RF) for volume expansion inadequately mitigate impaired microvascular cerebral blood flow (mvCBF) and hypoxia after TBI/HS. We hypothesized that nanomolar quantities of drag reducing polymers in resuscitation fluid (DRP-RF), would improve mvCBF by rheological modulation of hemodynamics. Methods: TBI was induced in rats by fluid percussion (1.5 atm, 50 ms) followed by controlled hemorrhage to a mean arterial pressure (MAP) = 40 mmHg. DRP-RF or lactated Ringer (LR-RF) was infused to MAP of 60 mmHg for 1 h (pre-hospital), followed by blood re-infusion to a MAP = 70 mmHg (hospital). Temperature, MAP, blood gases and electrolytes were monitored. In vivo 2-photon laser scanning microscopy was used to monitor microvascular blood flow, hypoxia (NADH) and necrosis (i.v. propidium iodide) for 5 h after TBI/HS followed by MRI for CBF and lesion volume. Results: TBI/HS compromised brain microvascular flow leading to capillary microthrombosis, tissue hypoxia and neuronal necrosis. DRP-RF compared to LR-RF reduced microthrombosis, restored collapsed capillary flow and improved mvCBF (82 ± 9.7% vs. 62 ± 9.7%, respectively, p < 0.05, n = 10). DRP-RF vs LR-RF decreased tissue hypoxia (77 ± 8.2% vs. 60 ± 10.5%, p < 0.05), and neuronal necrosis (21 ± 7.2% vs. 36 ± 7.3%, respectively, p < 0.05). MRI showed reduced lesion volumes with DRP-RF. Conclusions: DRP-RF effectively restores mvCBF, reduces hypoxia and protects neurons compared to conventional volume expansion with LR-RF after TBI/HS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Manley G, Knudson MM, Morabito D et al (2001) Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg 136(10):1118–1123

    Article  CAS  Google Scholar 

  2. Navarro JC, Pillai S, Cherian L et al (2012) Histopathological and behavioral effects of immediate and delayed hemorrhagic shock after mild traumatic brain injury in rats. J Neurotrauma 29(2):322–334

    Article  Google Scholar 

  3. Bragin DE, Statom GL, Yonas H et al (2014) Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity. Crit Care Med 42(12):2582–2590

    Article  Google Scholar 

  4. Bragin DE, Bush RC, Muller WS et al (2011) High intracranial pressure effects on cerebral cortical microvascular flow in rats. J Neurotrauma 28(5):775–785

    Article  Google Scholar 

  5. Bragin DE, Kameneva MV, Bragina OA et al (2017) Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats. J Cereb Blood Flow Metab 37(3):762–775

    Article  Google Scholar 

  6. Kameneva MV, Wu ZJ, Uraysh A et al (2004) Blood soluble drag-reducing polymers prevent lethality from hemorrhagic shock in acute animal experiments. Biorheology 41(1):53–64

    CAS  PubMed  Google Scholar 

  7. Fumagalli S, Coles JA, Ejlerskov P et al (2011) In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke. Stroke 42(5):1429–1436

    Article  Google Scholar 

  8. Kameneva MV (2012) Microrheological effects of drag-reducing polymers in vitro and in vivo. Int J Eng Sci 59:168–183

    Article  CAS  Google Scholar 

  9. Falk JL (1995) Fluid resuscitation in brain-injured patients. Crit Care Med 23(1):4–6

    Article  CAS  Google Scholar 

  10. Lee EJ, Hung YC, Lee MY (1999) Anemic hypoxia in moderate intracerebral hemorrhage: the alterations of cerebral hemodynamics and brain metabolism. J Neurol Sci 164(2):117–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by DOD DM160142, R21NS091600 and RMSE № 17.1223.2017/AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Bragin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bragin, D.E., Lara, D.A., Bragina, O.A., Kameneva, M.V., Nemoto, E.M. (2018). Resuscitation Fluid with Drag Reducing Polymer Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock. In: Thews, O., LaManna, J., Harrison, D. (eds) Oxygen Transport to Tissue XL. Advances in Experimental Medicine and Biology, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-319-91287-5_7

Download citation

Publish with us

Policies and ethics