Skip to main content

Fundamentals of Complex Network Analysis

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 148))

Abstract

Complex network analysis is a collection of quantitative methods for studying the structure and dynamics of complex networked systems. This chapter presents the fundamentals of complex network analysis. We start out by presenting the basic concepts of complex networks and graph theory. Then, we focus on fundamental network analysis measures and algorithms related to node connectivity, distance, centrality, similarity and clustering. Finally, we discuss fundamental complex network models and their characteristics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbe, E.: Community detection and stochastic block models: recent developments (2017). arXiv:1703.10146

  2. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003). https://doi.org/10.1016/S0378-8733(03)00009-1

    Article  Google Scholar 

  3. Alba, R.D.: A graph theoretic definition of a sociometric clique. J Math Sociol. 3(1), 113–126 (1973). https://doi.org/10.1080/0022250X.1973.9989826

    Article  MathSciNet  MATH  Google Scholar 

  4. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Netw. Heterog. Media 3(2), 371–393 (2008). https://doi.org/10.3934/nhm.2008.3.371

    Article  MathSciNet  MATH  Google Scholar 

  6. Amaral, L.A.N., Scala, A., Barthlmy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97(21), 11149–11152 (2000). https://doi.org/10.1073/pnas.200327197

    Article  Google Scholar 

  7. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  8. Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011). https://doi.org/10.1007/s11634-010-0079-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950). https://doi.org/10.1121/1.1906679

    Article  Google Scholar 

  10. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965). https://doi.org/10.1002/bs.3830100205

    Article  Google Scholar 

  11. Bender, E.A., Canfield, E.: The asymptotic number of labeled graphs with given degree sequences. J Comb. Theory Ser. A 24(3), 296–307 (1978). https://doi.org/10.1016/0097-3165(78)90059-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424(45), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

    Article  MathSciNet  MATH  Google Scholar 

  14. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014). https://doi.org/10.1080/15427951.2013.865686

    Article  MathSciNet  Google Scholar 

  15. Boldi, P., Rosa, M., Vigna, S.: Robustness of social and web graphs to node removal. Soc. Netw. Anal. Min. 3(4), 829–842 (2013). https://doi.org/10.1007/s13278-013-0096-x

    Article  Google Scholar 

  16. Bollobás, B., Borgs, C., Chayes, J., Riordan, O.: Directed scale-free graphs. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, Society for Industrial and Applied Mathematics. pp. 132–139, Philadelphia, PA, USA (2003). https://doi.org/10.1145/644108.644133

  17. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs, pp. 1–34. Wiley-VCH Verlag GmbH & Co. KGaA (2005). https://doi.org/10.1002/3527602755.ch1

  18. Bollobás, B.: Random Graphs. Cambridge University Press (2001)

    Google Scholar 

  19. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972). https://doi.org/10.1080/0022250X.1972.9989806

    Article  Google Scholar 

  20. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987). https://doi.org/10.2307/2780000

    Article  Google Scholar 

  21. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000). https://doi.org/10.1016/S0378-8733(99)00019-2

    Article  Google Scholar 

  22. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

    Article  MATH  Google Scholar 

  23. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008). https://doi.org/10.1016/j.socnet.2007.11.001

    Article  Google Scholar 

  24. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng 20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

    Article  MATH  Google Scholar 

  25. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  26. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). https://doi.org/10.1145/362342.362367

    Article  MATH  Google Scholar 

  27. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004). https://doi.org/10.1103/PhysRevE.70.066111

  28. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). https://doi.org/10.1137/070710111

    Article  MathSciNet  MATH  Google Scholar 

  29. Costa,.LdF, Oliveira, O., Travieso, G., Rodrigues, F.A., Villas Boas, P., Antiqueira, L., Viana, M.P., Correa Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011). https://doi.org/10.1080/00018732.2011.572452

    Article  Google Scholar 

  30. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  31. Dongen, S.V.: Graph clustering via a discrete uncoupling process. SIAM J. Matrix Anal. Appl. 30(1), 121–141 (2008). https://doi.org/10.1137/040608635

    Article  MathSciNet  MATH  Google Scholar 

  32. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000). https://doi.org/10.1103/PhysRevLett.85.4633

    Article  Google Scholar 

  33. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs, pp. 364–375. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-20662-7_31

    Chapter  Google Scholar 

  34. Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debr. 6, 290–297 (1959)

    MATH  Google Scholar 

  35. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  36. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35(3), 66–71 (2002). https://doi.org/10.1109/2.989932

    Article  Google Scholar 

  37. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Phys. Rev. E 70, 056104 (2004). https://doi.org/10.1103/PhysRevE.70.056104

  38. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(35), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  39. Fortunato, S., Barthlemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

    Article  Google Scholar 

  40. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  41. Freeman, L.C., Borgatti, S.P., White, D.R.: Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. 13(2), 141–154 (1991). https://doi.org/10.1016/0378-8733(91)90017-N

    Article  MathSciNet  Google Scholar 

  42. Garlaschelli, D., Loffredo, M.: Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268701 (2004). https://doi.org/10.1103/PhysRevLett.93.268701

  43. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)

    Article  Google Scholar 

  44. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  45. Goldstein, M.L., Morris, S.A., Yen, G.G.: Problems with fitting to the power-law distribution. Eur. Phys. J. B - Condens. Matter Complex Syst. 41(2), 255–258 (2004). https://doi.org/10.1140/epjb/e2004-00316-5

    Article  Google Scholar 

  46. Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010). https://doi.org/10.1103/PhysRevE.81.046106

  47. Guo, Q., Zhou, T., Liu, J.G., Bai, W.J., Wang, B.H., Zhao, M.: Growing scale-free small-world networks with tunable assortative coefficient. Phys. A Stat. Mech. Appl. 371(2), 814–822 (2006). https://doi.org/10.1016/j.physa.2006.03.055

    Article  Google Scholar 

  48. Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks, pp. 243–275. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_9

    Chapter  Google Scholar 

  49. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983). https://doi.org/10.1016/0378-8733(83)90021-7

    Article  MathSciNet  Google Scholar 

  50. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002). https://doi.org/10.1103/PhysRevE.65.056109

  51. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002). https://doi.org/10.1103/PhysRevE.65.026107

  52. Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02. pp. 538–543, ACM, New York, USA (2002). https://doi.org/10.1145/775047.775126

  53. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. Proc. VLDB Endow. 9(1), 13–23 (2015). https://doi.org/10.14778/2850469.2850471

    Article  Google Scholar 

  54. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D., Nakano, S.i., Tokuyama, T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 1627, pp. 1–17

    Google Scholar 

  55. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

    Article  MathSciNet  MATH  Google Scholar 

  56. Krapivsky, P.L., Redner, S.: Network growth by copying. Phys. Rev. E 71, 036118 (2005). https://doi.org/10.1103/PhysRevE.71.036118

  57. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629–4632 (2000). https://doi.org/10.1103/PhysRevLett.85.4629

    Article  Google Scholar 

  58. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the Web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00, IEEE Computer Society. pp. 57–65, Washington, USA (2000). https://doi.org/10.1109/SFCS.2000.892065

  59. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008). https://doi.org/10.1103/PhysRevLett.100.118703

  60. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007). https://doi.org/10.1145/1217299.1217301

    Article  Google Scholar 

  61. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009). https://doi.org/10.1080/15427951.2009.10129177

    Article  MathSciNet  MATH  Google Scholar 

  62. Li, C., Maini, P.K.: An evolving network model with community structure. J. Phys. A Math. Gen. 38(45), 9741 (2005). https://doi.org/10.1088/0305-4470/38/45/002

    Article  MathSciNet  MATH  Google Scholar 

  63. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03. pp. 556–559, ACM, New York, USA (2003). https://doi.org/10.1145/956863.956972

  64. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10. pp. 243–252, ACM, New York, USA, (2010). https://doi.org/10.1145/1835804.1835837

  65. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl. 390(6), 1150–1170 (2011). https://doi.org/10.1016/j.physa.2010.11.027

    Article  Google Scholar 

  66. Martínez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49(4), 69:1–69:33 (2016). https://doi.org/10.1145/3012704

    Article  Google Scholar 

  67. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979). https://doi.org/10.1007/BF00139635

    Article  Google Scholar 

  68. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016,107 (2008). https://doi.org/10.1103/PhysRevE.77.016107

  69. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

  70. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004). https://doi.org/10.1103/PhysRevE.70.056131

  71. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002). https://doi.org/10.1103/PhysRevLett.89.208701

  72. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

  73. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003). https://doi.org/10.1103/PhysRevE.67.026126

  74. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  75. Newman, M.E.J.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005). https://doi.org/10.1080/00107510500052444

    Article  Google Scholar 

  76. Newman, M.: Networks: An Introduction. Oxford University Press Inc, New York (2010)

    Book  Google Scholar 

  77. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), P03024 (2009)

    Article  Google Scholar 

  78. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87, 258701 (2001). https://doi.org/10.1103/PhysRevLett.87.258701

  79. Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Phys. Rev. E 78, 036107 (2008). https://doi.org/10.1103/PhysRevE.78.036107

  80. Pollner, P., Palla, G., Vicsek, T.: Preferential attachment of communities: the same principle, but a higher level. EPL (Europhys. Lett.) 73(3), 478 (2006). https://doi.org/10.1209/epl/i2005-10414-6

    Article  MathSciNet  Google Scholar 

  81. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006). https://doi.org/10.7155/jgaa.00124

    Article  MathSciNet  MATH  Google Scholar 

  82. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004). https://doi.org/10.1073/pnas.0400054101

    Article  Google Scholar 

  83. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007). https://doi.org/10.1103/PhysRevE.76.036106

  84. Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014). https://doi.org/10.1137/120881683

    Article  MathSciNet  MATH  Google Scholar 

  85. Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure in complex networks. Proc. Natl. Acad. Sci. U.S.A. 105, 1118–1123 (2007). https://doi.org/10.1073/pnas.0706851105

    Article  Google Scholar 

  86. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983). https://doi.org/10.1016/0378-8733(83)90028-X

    Article  MathSciNet  Google Scholar 

  87. Seidman, S.B., Foster, B.L.: A graphtheoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978). https://doi.org/10.1080/0022250X.1978.9989883

    Article  MathSciNet  MATH  Google Scholar 

  88. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Phys. A Stat. Mech. Appl. 388(8), 1706–1712 (2009). https://doi.org/10.1016/j.physa.2008.12.021

    Article  Google Scholar 

  89. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  90. Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature 393(6684), 409–10 (1998). https://doi.org/10.1038/30918

    Article  Google Scholar 

  91. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35 (2013). https://doi.org/10.1145/2501654.2501657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Savić .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savić, M., Ivanović, M., Jain, L.C. (2019). Fundamentals of Complex Network Analysis. In: Complex Networks in Software, Knowledge, and Social Systems. Intelligent Systems Reference Library, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-319-91196-0_2

Download citation

Publish with us

Policies and ethics