Skip to main content

Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 754))

  • 603 Accesses

Abstract

Generators of pseudorandom sequences are widely used in practice. Generators of pseudorandom bit sequences occupy a special place among them; they are necessary for solving a number of important tasks, for example, for strong cryptography. The impossibility of predicting the following values of pseudorandom sequences is one of the basic requirements for such generators. Otherwise, these generators cannot be used to protect of information. It is generally accepted that if the stochastic sequence is stationary, then the prediction of such sequence is impossible. Our research shows that there are invariants for specific pseudorandom sequences that can be used to this prediction.

The article is devoted to the method of prediction of pseudorandom bit sequences. The values of the autocorrelation coefficients for some lags are used. Good results are obtained for software-implemented stationary stochastic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chethan, J., Lakkannavar, M.: Design of low power test pattern generator using low transition LFSR for high fault coverage analysis. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 5(2), 15–21 (2013). https://doi.org/10.5815/ijieeb.2013.02.03

    Article  Google Scholar 

  2. Ivanov, M.A., Chugunkov, I.V.: Cryptographic methods of information protection in computer systems and networks: a teaching manual. NIUA MIFI, Moscow (in Russian) (2012)

    Google Scholar 

  3. Jhansirani, A., Harikishore, K., Basha, F., et al.: Fault tolerance in bit swapping LFSR using FPGA architecture. Int. J. Eng. Res. Appl. 2(1), 1080–1087 (2012)

    Google Scholar 

  4. Kitsos, O., Sklava, P., Zervas, N., et al.: A reconfigurable linear feedback shift register (LFSR) for the bluetooth system. ICECS (2001). https://doi.org/10.1109/ICECS.2001.957640

    Article  Google Scholar 

  5. Klapper, A., Goresky, M.: 2-Adic shift registers. In: Fast Software Encryption, Cambridge Security Workshop Proceedings, pp. 174–178. Springer (1994)

    Chapter  Google Scholar 

  6. Maksymovych, V., Shevchuk, M., Mandrona, M.: Research pseudorandom bit sequence generators based on LFSR. J. Autom. Measur. Control 852, 29–34 (2016). (in Ukraine)

    Google Scholar 

  7. Maksymovych, V., Mandrona, M.: Investigation of the statistical characteristics of the modified fibonacci generators. J. Autom. Inf. Sci. (2014). https://doi.org/10.1615/JAutomatInfScien.v46.i12.60

    Article  Google Scholar 

  8. Maksymovych, V., Mandrona, M.: Comparative analysis of pseudorandom bit sequence generators. J. Autom. Inf. Sci. (2017). https://doi.org/10.1615/JAutomatInfScien.v49.i3.90

    Article  Google Scholar 

  9. Maksymovych, V., Mandrona, M., Garasimchuk, O., Kostiv, Yu.: A study of the characteristics of the fibonacci modified additive generator with a delay. J. Autom. Inf. Sci. (2016). https://doi.org/10.1615/JAutomatInfScien.v48.i11.70

    Article  Google Scholar 

  10. Ali, M.A., Ali, E., Habib, M.A., Nadim, M., Kusaka, T., Nogami, Y.: Pseudo random ternary sequence and its autocorrelation property over finite field. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(9), 54–63 (2017). https://doi.org/10.5815/ijcnis.2017.09.07

    Article  Google Scholar 

  11. Milovanovic, E., Stojcev, M., Milovanovic, I., et al.: Concurrent generation of pseudo random numbers with LFSR of fibonacci and galois type. Comput. Inform. 34, 941–958 (2015)

    MathSciNet  Google Scholar 

  12. Mondal, A., Pujari, S.: A novel approach of image based steganography using pseudorandom sequence generator function and DCT coefficients. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(3), 42–49 (2015). https://doi.org/10.5815/ijcnis.2015.03.06

    Article  Google Scholar 

  13. Nas, R.J., Van Berkel, C.H.: High throughput, low set-up time, reconfigurable linear feedback shift registers. In: International Conference on Computer Design (2010). https://doi.org/10.1109/iccd.2010.5647572

  14. Ndaw, B.A., Sow, D., Sanghare, M.: Construction of the maximum period linear feedback shift registers (LFSR) (Primitive Polynomials and Linear Recurring Relations). Br. J. Math. Comput. Sci. (2015). https://doi.org/10.9734/BJMCS/2015/19442

    Article  Google Scholar 

  15. NIST SP 800-22. A Statistic Test Suite for Random and Pseudorandom Number Generators for Cryptographic Application. DIALOG: http://csrc.nist.gov/publications/niatpubs/SP800-22rev1a.pdf. Accessed Apr 2000

  16. Nanda, S.K., Tripathy, D.P., Nayak, S.K., Mohapatra, S.: Prediction of rainfall in india using artificial neural network (ANN) models. Int. J. Intell. Syst. Appl. (IJISA) 5(12), 1–22 (2013). https://doi.org/10.5815/ijisa.2013.12.01

    Article  Google Scholar 

  17. Schneier, B.: Applied cryptography, protocols, and algorithms for source code in C. Triumph, Moscow (2002). (in Russia)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nyemkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maksymovych, V., Nyemkova, E., Shevchuk, M. (2019). Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_44

Download citation

Publish with us

Policies and ethics