Skip to main content

Antidiabetic and Antioxidant Activities of Bioactive Compounds from Endophytes

  • Reference work entry
  • First Online:
Endophytes and Secondary Metabolites

Abstract

The aim of the present chapter is to appraise the phytochemical and pharmacological potential of the endophytes. This chapter will further highlight the future research prospects of the study of endophytes with antioxidant and antidiabetic activities. Informations on endophytes were obtained from related publications using electronic scientific databases. Based on previous reports, it could be said that the endophytes have emerged as excellent source of compounds which could be used for the treatment of skin diseases and microbial infections and as anticancer and anti-inflammatory agents. The studies provide new knowledge on the isolation and characterization of novel bioactives especially in the discovery of novel therapeutic drugs with antioxidant and antidiabetic properties. however, current research on the pharmacological properties of all the endophyte species including bioassay-guided isolation of phytoconstituents and their mechanism of action, pharmacokinetics, bioavailability, efficacy, and safety should be carried out in the future to add more value to this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABTS:

2,2-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid)

AGEs:

Advanced glycation end products

AgNPs:

Silver nanoparticles

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AMPK:

AMP-activated protein kinase

AST:

Aspartate aminotransferase

CAT:

Catalase

CE6:

Not identified

CE9:

Not identified

CEC12:

Cochliobolus sp.

CED3:

Diaporthe sp.

CED4:

Diaporthe sp.

CED7:

Diaporthe sp.

CEDp11:

Diaporthe phaseolorum

CEDp2:

Diaporthe phaseolorum

CEP1:

Phomopsis sp.

CEP10:

Phomopsis sp.

CEP4:

Phomopsis sp.

CES13:

Sordariomycetes sp.

CES8:

Sordariomycetes sp.

CVD:

Cardiovascular diseases

DAPG:

2,4-Diacetylphloroglucinol

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

EtOAc:

Ethyl acetate

FRAP:

Ferric reducing ability of plasma

FTIR:

Fourier-transform infrared spectroscopy

GC-MS:

Gas chromatography mass spectrometry

GPx:

Glutathione peroxidase

ITS:

Internal transcribed spacer

MDA:

Malondialdehyde

NCB:

Gene sequencing

PMS-NADH:

Phenazine methosulfate-nicotinamide adenine dinucleotide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

T2D:

Type 2 diabetes mellitus

TEM:

Transmission electron microscopy

UV-Vis:

Ultraviolet-visible spectroscopy

VOLF4:

Aspergillus sp.

VOLF5:

Peniophora sp.

VOR5:

Fusarium nematophilum

XRD:

X-ray diffraction

References

  1. Sell DR, Monnier VM (2012) Molecular basis of arterial stiffening: role of glycation – a mini-review. Gerontology 58(3):227–237. https://doi.org/10.1159/000334668

    Article  CAS  PubMed  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. https://doi.org/10.1016/j.diabres.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Klonoff DC, Schwartz DM (2000) An economic analysis of interventions for diabetes. Diabetes Care 23:390–404

    Article  CAS  PubMed  Google Scholar 

  4. Fatmah A, Siti B, Zariyantey A, Nasar A, Jamaludin M (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12:5–18

    Article  Google Scholar 

  5. Perez RM, Flores LB, Neira AM (2012) Evaluation of the antioxidant and anti-glication effects of the hexane extract from piper auritum leaves in Vitro and beneficial activity on oxidative stress and advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Molecules 17, 11897–11919. https://doi.org/10.3390/molecules171011897

    Article  CAS  Google Scholar 

  6. Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267

    Article  CAS  PubMed  Google Scholar 

  7. Yavuz O, Cam M, Bukan N, Guven A, Silan F (2003) Protective effect of melatonin on beta-cell damage in streptozotocin induced diabetes in rats. Acta Histochem 105:261–266

    Article  CAS  PubMed  Google Scholar 

  8. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160:1–40. https://doi.org/10.1016/j.cbi.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Saxena AK, Srivastava P, Kale RK, Baquer NZ (1993) Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol 45(3):539–542

    Article  CAS  PubMed  Google Scholar 

  10. Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38. https://doi.org/10.1002/jbt.10058.

    Article  CAS  PubMed  Google Scholar 

  11. Pocernich CB, Cardin AL, Racine CL, Lauderback CM, Butterfield DA (2001) Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 39:141–149

    Article  CAS  PubMed  Google Scholar 

  12. Kaysen GA, Dubin JA, Müller HG, Mitch WE, Rosales LM, Levin NW (2002) Relationships among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients. Kidney Int 61:2240–2249. https://doi.org/10.1046/j.1523-1755.2002.00076.x

    Article  PubMed  Google Scholar 

  13. Andrade-Cetto A, Heinrich M (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99:325–348. https://doi.org/10.1016/j.jep.2005.04.019

    Article  PubMed  Google Scholar 

  14. Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100. https://doi.org/10.1016/j.jep.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  15. Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond) 12:60–64. https://doi.org/10.1186/s12986-015-0057-7

    Article  CAS  Google Scholar 

  16. Nagalingam A, Arbiser JL, Bonner MY, Saxena NK, Sharma D (2012) Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogénesis. Breast Cancer Res 14(1):R35. https://doi.org/10.1186/bcr3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253. https://doi.org/10.2147/DMSO.S43731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson GM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081

    Article  CAS  PubMed  Google Scholar 

  19. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174. https://doi.org/10.1172/JCI13505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Debbab A, Aly AH, Edrada-Ebel R, Wray V, Müller WE, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MH, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium. J Nat Prod 72(4):626–631. https://doi.org/10.1021/np8004997

    Article  CAS  PubMed  Google Scholar 

  21. Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur J Org Chem 19:3976–3980. https://doi.org/10.1016/j.phytochem.2015.11.016

    Article  CAS  Google Scholar 

  22. Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334. https://doi.org/10.1007/s10529-015-1814-4

    Article  CAS  PubMed  Google Scholar 

  23. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395. https://doi.org/10.1038/ja.2012.27

    Article  CAS  Google Scholar 

  24. Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62. https://doi.org/10.3923/jm.2011.54.62

    Article  Google Scholar 

  25. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in Central Spain. Fungal Divers 47:29–42. https://doi.org/10.1128/AEM.07655-11

    Article  CAS  Google Scholar 

  26. Araújo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  27. Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333. https://doi.org/10.1080/07388550290789531

    Article  CAS  PubMed  Google Scholar 

  28. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. https://doi.org/10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  29. Katoch M, Salgotra A, Singh G (2014) Endophytic fungi found in association with Bacopa monnieri as resourceful producers of industrial enzymes and antimicrobial bioactive natural products. Braz Arch Biol Technol 57:714–722. https://doi.org/10.1590/S1516-8913201402502

    Article  CAS  Google Scholar 

  30. Katoch M, Singh G, Sharma S, Gupta N, Sangwan PL, Saxena AK (2014) Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae). BMC Complement Altern Med 14:52–58. https://doi.org/10.1186/1472-68821452

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-ulHasan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the western Himalayas. Springerplus 2:8. https://doi.org/10.1186/2193-1801-2-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bhatnagar I, Kim SK (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720. https://doi.org/10.3390/md8102702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. Elsvier, London, UK, p 704

    Google Scholar 

  34. Blackwell M (2011) The Fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  35. Wilson D, Barr ME, Faeth SH (1997) Ecology and description of a new species of Ophiognomonia endophytic in the leaves of Quercus emoryi. Mycologia 89:537–546. https://doi.org/10.2307/3760988

    Article  Google Scholar 

  36. Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z (2010) SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697. https://doi.org/10.1111/j.1476-5381.2009.00577.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramos S (2008) Effect of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18:427–442. https://doi.org/10.1016/j.jnutbio.2006.11.004

    Article  CAS  Google Scholar 

  38. World Health Organization (2014) Global status on noncommunicable diseases 2014. WHO Press, Geneva

    Google Scholar 

  39. Shahidi SF, Ambigaipalan P (2015) Phenolics and polyphenolics in food beverages and spices: antioxidants activity and health effects-review. J Funct Food 18:820–897

    Article  CAS  Google Scholar 

  40. Xanthis A, Hatzitolios A, Koliakos G, Tatola V (2007) Advanced glycosylation end products and nutrition-A possible relation with diabetic aterosclerosis and how to prevent it. J Food Sci 72:R125–R129. https://doi.org/10.1111/j.1750-3841.2007.00508.x

    Article  CAS  PubMed  Google Scholar 

  41. Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P (2017) The endophytic symbiont – Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front Microbiol 8:1897–1905. https://doi.org/10.3389/fmicb.2017.01897

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mani VM, Parimala AJ, Soundari G, Karthiyaini D, Preethi K (2015) Bioprospecting endophytic fungi and their metabolites from medicinal tree Aegle marmelos in Western Ghats. India Mycobiol 43(3):303–310. https://doi.org/10.5941/MYCO.2015.43.3.303. Published online 2015 Sep 30

    Article  Google Scholar 

  43. Khan AL, Gilani SA, Waqas M, Al-hosni K, Al-khiziri S, Kim Y, Ali L, Kang S, Asaf S, Shahzad R, Hussain J, Lee I, Al-harrasi A (2017) Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. J Zhejiang Univ-Sci B (Biomed Biotechnol) 18:125–137. https://doi.org/10.1631/jzus.B1500271

    Article  CAS  Google Scholar 

  44. Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6:132. https://doi.org/10.1007/s13205-016-0433-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ascêncio PGM, Ascêncio SD, Aguiar AA, Fiorini A, Pimenta RZ (2014) Chemical assessment and antimicrobial and antioxidant activities of endophytic fungi extracts isolated from Costus spiralis (Jacq.) Roscoe (Costaceae). Evid Based Complement Alternat Med 2014:190543. https://doi.org/10.1155/2014/190543. 10 pages

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nath A, Raghunatha P, Joshi SR (2012) Diversity and biological activities of endophytic fungi of Emblica officinalis, an ethnomedicinal plant of India. Mycobiology 40(1):8–13. https://doi.org/10.5941/MYCO.2012.40.1.008

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yadav M, Yadav A, Kumar S, Yadav JP (2016) Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains. BMC Microbiol 16:44. https://doi.org/10.1186/s12866-016-0664-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pan F, Su T, Cai S, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep. https://doi.org/10.1038/srep42008

  49. Srinivasan K, Jagadish LK, Shenbhagaraman R, Muthumary J (2010) Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Guazuma tomentosa. J Phytology 2:37–41

    Google Scholar 

  50. Netala VR, Bethu MS, Pushpalatha B, Baki VB, Aishwarya S, Rao JR, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696. https://doi.org/10.2147/IJN.S112857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186. https://doi.org/10.1021/np800733y

    Article  CAS  PubMed  Google Scholar 

  52. Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077. https://doi.org/10.1021/jo00127a001

    Article  CAS  Google Scholar 

  53. Elfita M, Munawar R (2012) Isolation of antioxidant compound from endophytic fungi Acremonium sp. from the Twigs of Kandis Gajah. Makara J Sci 16:46–50. https://doi.org/10.7454/mss.v16i1.1280

    Article  Google Scholar 

  54. Seetharaman P, Gnanasekar S, Chandrasekaran R, Chandrakasan G, Kadarkarai M, Sivaperumal S (2017) Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann Microbiol 67:321–331. https://doi.org/10.1007/s13213-017-1263-5

    Article  CAS  Google Scholar 

  55. Wang L, Qiu P, Long XF, Zhang S, Zeng ZG, Tian YQ (2016) Comparative analysis of chemical constituents, antimicrobial and antioxidant activities of ethylacetate extracts of Polygonum cuspidatum and its endophytic actinomycete, Streptomyces sp. A0916. Chin J Nat Med 14:117–123. https://doi.org/10.1016/S1875-5364(16)60004-3

    Article  PubMed  Google Scholar 

  56. Cui J-L, Guo T-T, Ren Z-X, Zhang N-S, Wang M-L (2015) Diversity and antioxidant activity of culturable endophytic fungi from Alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS One 10:e0118204. https://doi.org/10.1371/journal.pone.0118204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Surveswaran S, Cai YZ, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953. https://doi.org/10.1016/j.foodchem.2006.06.033

    Article  CAS  Google Scholar 

  58. Panossiana A, Hammb R, Wikmana G, Efferth T (2014) Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: an interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine 21:1325–1348. https://doi.org/10.1016/j.phymed.2014.07.008

    Article  CAS  Google Scholar 

  59. Sadananda TS, Nirupama R, Chaithra K, Govindappa M, Chandrappa CP, Vinay Raghavendra B (2011) Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plants Res 5:3643–3652

    CAS  Google Scholar 

  60. Li Y, Xin X, Chang Z, Shi R, Miao Z, Ding J, Hao G (2015) The endophytes fungi from Salvia miltiorrhiza Bge.f. alba are a potential source of natural antioxidants. Bot Stud 565:1–7. https://doi.org/10.1186/S40529-015-0086-6

    Article  Google Scholar 

  61. Zeng PY, Wu JG, Liao LM, Chen TQ, Wu JZ, Wong K-H (2011) In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa. Genet Mol Res 10:3169–3179. https://doi.org/10.4238/2011.December.20.1

    Article  CAS  PubMed  Google Scholar 

  62. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  63. Khiralla A, Mohamed I, Thomas J, Mignard B, Spina R, Yagi S, Laurain-Mattar D (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8:701–704. https://doi.org/10.3923/ajps.2016.8.15

    Article  CAS  PubMed  Google Scholar 

  64. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PCW, Chaud RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    Article  CAS  PubMed  Google Scholar 

  65. Song YC, Huang WY, Sun C, Wang EW, Tan RX (2005) Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosparium sp1FB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 28:506–509

    Article  CAS  PubMed  Google Scholar 

  66. Artanti N, Tachibana S, Kardono LB, Sukiman H (2012) Isolation of alpha-glucosidase inhibitors produced by an endophytic fungus, Colletotrichum sp. TSC13 from Taxus sumatrana. Pak J Biol Sci 15(14):673–679. https://doi.org/10.3923/pjbs.2012.673.679

    Article  PubMed  Google Scholar 

  67. Artanti N, Tachibana S, Kardono LB (2014) Effect of media compositions on α-glucosidase inhibitory activity, growth and fatty acid content in mycelium extracts of Colletotrichum sp. TSC13 from Taxus Sumatrana (Miq.) de Laub. Pak J Biol Sci 17:884–890. https://doi.org/10.3923/pjbs.2014.884.890

    Article  CAS  PubMed  Google Scholar 

  68. Artanti N, Tachibana S, Kardono LB, Sukiman H (2011) Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak J Biol Sci 14(22):1019–1023. https://doi.org/10.3923/pjbs.2011.1019.1023

    Article  CAS  PubMed  Google Scholar 

  69. Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A (2016) Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J Ethnopharmacol 194:450–456. https://doi.org/10.1016/j.jep.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  70. Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13(6):e0197359. https://doi.org/10.1371/journal.pone.0197359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang W (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146. https://doi.org/10.1016/j.fitote.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Cox DG, Ding W, Huang G, Lin Y, Li C (2014) Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Mar Drugs 12:2840–2850. https://doi.org/10.3390/md12052840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choe E, Min DB (2009) Mechanisms of antioxidants in the oxidation of foods. Compr Rev Food Sci Food Saf 8:345–358. https://doi.org/10.1111/j.1541-4337.2009.00085.x

    Article  CAS  Google Scholar 

  74. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  PubMed  Google Scholar 

  75. Rodríguez J, Olea-Azar C, Cavieres C, Norambuena E, Delgado-Castro T, Soto-Delgado J, Araya-Maturana R (2007) Antioxidant properties and free radical-scavenging reactivity of a family of hydroxynaphthalenones and dihydroxyanthracenones. Bioorg Med Chem 15:7058–7065. https://doi.org/10.1016/j.bmc.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  76. Dong-Li L, Li X, Wang B (2009) Natural anthraquinone derivatives from a marine mangrove plant derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol 19:675–680. https://doi.org/10.4014/jmb.0805.342

    Article  CAS  Google Scholar 

  77. Singh B, Kaur A (2015) Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J Appl Microbiol 120:301–311. https://doi.org/10.1111/jam.12998

    Article  CAS  Google Scholar 

  78. Ushasri R, Anusha R (2015) In vitro anti-diabetic activity of ethanolic and acetone extracts of endophytic fungi Syncephalastrum racemosum isolated from the seaweed Gracilaria corticata by alpha-amylase inhibition assay method. Int J Curr Microbiol Appl Sci 4:254–259

    CAS  Google Scholar 

  79. Mishra PD, Verekar SA, Kulkarni-Almeida A, Roy SK, Jain S, Balakrishnan A, Vishwakarma R, Deshmuk SK (2013) Anti-inflammatory and anti-diabetic naphthaquinones from an endophytic fungus Dendryphion nanum (Nees) S. Hughes Indian J Chem 52B:565–556

    CAS  Google Scholar 

  80. Huang R, Jiang BG, Li XN, Wang YT, Liu SS, Zheng KX, He J, Wu SH (2018) Polyoxygenated cyclohexenoids with promising α-glycosidase inhibitory activity produced by Phomopsis sp. YE3250, an endophytic fungus derived from Paeonia delavayi. J Agric Food Chem 66:1140–1146. https://doi.org/10.1021/acs.jafc.7b04998

    Article  CAS  PubMed  Google Scholar 

  81. Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB (2017) Phylogenomics and inhibitory activity upon the formation of advanced glycation end-products of 2, 4-diacetylphloroglucinol-producing Pseudomonas endophytes from Piper auritum. J Nat Prod 80:1955–1963. https://doi.org/10.1021/acs/natprod.6b00823

    Article  PubMed  Google Scholar 

  82. Dhankhar S, Yadav JP (2013) Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem 9:624–632

    Article  CAS  PubMed  Google Scholar 

  83. Kumar KM, Chandrappa CP, Channabasava R, Ramachandra YL, Padmalatha RS, Ravishankar RV, Govindappa M (2017) Anti-diabetic activity of endophytic fungi, Penicillium species of Tabebuia argentea; in silico and experimental analysis. Res J Phytochem 11:90–110

    Article  CAS  Google Scholar 

  84. Govindappa M, Channabasava R, Sunil Kumar KR, Pushpalatha KC (2013) Antioxidant activity and phytochemical screening of crude endophytes extracts of Tabebuia argentea Bur. & K. Sch. Am J Plant Sci 4:1641–1652. https://doi.org/10.4236/ajps.2013.48198

    Article  Google Scholar 

  85. Katoch M, Paul A, Singh G, Sridhar SNC (2017) Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 17:385. https://doi.org/10.1186/s12906-017-1893-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Govindappa M, Sadananda TS, Channabasava, Ramachandra YL, Chandrappa CP, Padmalatha RS, Prasad SK (2015) In vitro and in vivo antidiabetic activity of lectin (N-acetylgalactosamine, 64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Integr Obesity Diabetes 1:11–19

    Google Scholar 

  87. Song Y, Wang J, Huang H, Ma L, Wang J, Gu Y, Liu L, Lin Y (2012) Four eremophilane sesquiterpenes from the mangrove endophytic fungus Xylaria sp. BL321. Mar Drugs 10:340–348. https://doi.org/10.3390/md10020340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang L, Niaz SI, Khan D, Wang Z, Zhu Y, Zhou H, Lin Y, Li J, Liu L (2017) Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Mar Drugs 15:35. https://doi.org/10.3390/md1502003

    Article  CAS  PubMed Central  Google Scholar 

  89. Cui H, Liu Y, Nie Y, Liu Z, Chen S, Zhang Z, Lu Y, He L, Huang X, She Z (2016) polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar Drugs 14:86–95. https://doi.org/10.3390/md1405008

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Martha Perez Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perez Gutierrez, R.M., Neira González, A. (2019). Antidiabetic and Antioxidant Activities of Bioactive Compounds from Endophytes. In: Jha, S. (eds) Endophytes and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_30

Download citation

Publish with us

Policies and ethics