Skip to main content

Consequences of Altered Cardiac Activity on Brain Activity

  • Living reference work entry
  • First Online:
Book cover Brain and Heart Dynamics
  • 249 Accesses

Abstract

Many heart diseases can affect brain activity and the most common are atrial fibrillation, arterial hypertension, heart failure, ischemic heart disease, valvular heart disease, pulmonary arterial hypertension, and sudden cardiac arrest. The mechanisms underlying the brain dysfunction and the cognitive impairment can be different depending on the heart disease, but the decreased blood perfusion, silent cerebral infarctions due to cardioembolism, and cerebral white matter hyperintensities are the most commonly involved pathogenetic mechanisms, although also genetics seems to play a role in many diseases. Another important aspect to be considered is the presence of depression, which is common in many heart diseases and can affect not only the quality of life but also the outcome. Considering the importance of brain dysfunction on outcome, it is evident from the literature, how important it is to correctly identify patients who develop this type of problem in order to optimize their treatment and improve their outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, Forouzanfar MH, Naghavi M, Mensah GA, Ezzati M, Murray CJ. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129(8):837–47. https://doi.org/10.1161/CIRCULATIONAHA.113.005119.

    Article  PubMed  Google Scholar 

  2. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol. 2014;6:213–20. https://doi.org/10.2147/CLEP.S47385.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, ESC Scientific Document Group. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962. https://doi.org/10.1093/eurheartj/ehw210.

    Article  PubMed  Google Scholar 

  4. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham heart study. Circulation. 1998;98(10):946–52.

    Article  CAS  PubMed  Google Scholar 

  5. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke. 1991;22(8):983–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72. https://doi.org/10.1378/chest.09-1584.

    Article  PubMed  Google Scholar 

  7. Hylek EM, Go AS, Chang Y, Jensvold NG, Henault LE, Selby JV, Singer DE. Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. N Engl J Med. 2003;349(11):1019–26.

    Article  CAS  PubMed  Google Scholar 

  8. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L, RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51. https://doi.org/10.1056/NEJMoa0905561.

    Article  CAS  PubMed  Google Scholar 

  9. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, Berkowitz SD, Fox KA, Califf RM, ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91. https://doi.org/10.1056/NEJMoa1009638.

    Article  CAS  PubMed  Google Scholar 

  10. Hankey GJ, Patel MR, Stevens SR, Becker RC, Breithardt G, Carolei A, Diener HC, Donnan GA, Halperin JL, Mahaffey KW, Mas JL, Massaro A, Norrving B, Nessel CC, Paolini JF, Roine RO, Singer DE, Wong L, Califf RM, Fox KA, Hacke W, ROCKET AF Steering Committee Investigators. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. Lancet Neurol. 2012;11(4):315–22. https://doi.org/10.1016/S1474-4422(12)70042-X.

    Article  CAS  PubMed  Google Scholar 

  11. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, Waldo AL, Ezekowitz MD, Weitz JI, Špinar J, Ruzyllo W, Ruda M, Koretsune Y, Betcher J, Shi M, Grip LT, Patel SP, Patel I, Hanyok JJ, Mercuri M, Antman EM, ENGAGE AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104. https://doi.org/10.1056/NEJMoa1310907.

    Article  CAS  PubMed  Google Scholar 

  12. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L, ARISTOTLE cCommittees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobs V, May HT, Bair TL, Crandall BG, Cutler MJ, Day JD, Mallender C, Osborn JS, Stevens SM, Weiss JP, Woller SC, Bunch TJ. Long-term population-based cerebral ischemic event and cognitive outcomes of direct oral anticoagulants compared with warfarin among long-term anticoagulated patients for atrial fibrillation. Am J Cardiol. 2016;118(2):210–4. https://doi.org/10.1016/j.amjcard.2016.04.039.

    Article  PubMed  Google Scholar 

  14. Ezekowitz MD, James KE, Nazarian SM, Davenport J, Broderick JP, Gupta SR, Thadani V, Meyer ML, Bridgers SL. Silent cerebral infarction in patients with nonrheumatic atrial fibrillation. The veterans affairs stroke prevention in nonrheumatic atrial fibrillation Investigators. Circulation. 1995;92(8):2178–82.

    Article  CAS  PubMed  Google Scholar 

  15. Gaita F, Corsinovi L, Anselmino M, Raimondo C, Pianelli M, Toso E, Bergamasco L, Boffano C, Valentini MC, Cesarani F, Scaglione M. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J Am Coll Cardiol. 2013;62(21):1990–7. https://doi.org/10.1016/j.jacc.2013.05.074.

    Article  PubMed  Google Scholar 

  16. Chen LY, Norby FL, Gottesman RF, Mosley TH, Soliman EZ, Agarwal SK, Loehr LR, Folsom AR, Coresh J, Alonso A. Association of atrial fibrillation with cognitive decline and dementia over 20 years: the ARIC-NCS (Atherosclerosis Risk in Communities Neurocognitive Study). J Am Heart Assoc. 2018;7(6):pii: e007301. https://doi.org/10.1161/JAHA.117.007301.

    Article  Google Scholar 

  17. Singh-Manoux A, Fayosse A, Sabia S, Canonico M, Bobak M, Elbaz A, Kivimäki M, Dugravot A. Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur Heart J. 2017;38(34):2612–8. https://doi.org/10.1093/eurheartj/ehx208.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thacker EL, McKnight B, Psaty BM, Longstreth WT Jr, Sitlani CM, Dublin S, Arnold AM, Fitzpatrick AL, Gottesman RF, Heckbert SR. Atrial fibrillation and cognitive decline: a longitudinal cohort study. Neurology. 2013;81(2):119–25. https://doi.org/10.1212/WNL.0b013e31829a33d1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bunch TJ, May HT, Bair TL, Crandall BG, Cutler MJ, Day JD, Jacobs V, Mallender C, Osborn JS, Stevens SM, Weiss JP, Woller SC. Atrial fibrillation patients treated with long-term warfarin anticoagulation have higher rates of all dementia types compared with patients receiving long-term warfarin for other indications. J Am Heart Assoc. 2016;5(7):pii: e003932. https://doi.org/10.1161/JAHA.116.003932.

    Article  Google Scholar 

  20. Knecht S, Oelschläger C, Duning T, Lohmann H, Albers J, Stehling C, Heindel W, Breithardt G, Berger K, Ringelstein EB, Kirchhof P, Wersching H. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur Heart J. 2008;29(17):2125–32. https://doi.org/10.1093/eurheartj/ehn341.

    Article  PubMed  Google Scholar 

  21. Ott A, Breteler MM, de Bruyne MC, van Harskamp F, Grobbee DE, Hofman A. Atrial fibrillation and dementia in a population-based study. The Rotterdam study. Stroke. 1997;28(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  22. Gardarsdottir M, Sigurdsson S, Aspelund T, Rokita H, Launer LJ, Gudnason V, Arnar DO. Atrial fibrillation is associated with decreased total cerebral blood flow and brain perfusion. Europace. 2017; https://doi.org/10.1093/europace/eux220.

    Article  Google Scholar 

  23. Dublin S, Anderson ML, Haneuse SJ, Heckbert SR, Crane PK, Breitner JC, McCormick W, Bowen JD, Teri L, McCurry SM, Larson EB. Atrial fibrillation and risk of dementia: a prospective cohort study. J Am Geriatr Soc. 2011;59(8):1369–75. https://doi.org/10.1111/j.1532-5415.2011.03508.x.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, Craft S, Leverenz JB, Montine TJ. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62(4):406–13.

    Article  PubMed  Google Scholar 

  25. Barber M, Tait RC, Scott J, Rumley A, Lowe GD, Stott DJ. Dementia in subjects with atrial fibrillation: hemostatic function and the role of anticoagulation. J Thromb Haemost. 2004;2(11):1873–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kumral E, Balkir K, Uzuner N, Evyapan D, Nalbantgil S. Microembolic signal detection in patients with symptomatic and asymptomatic lone atrial fibrillation. Cerebrovasc Dis. 2001;12(3):192–6.

    Article  CAS  PubMed  Google Scholar 

  27. Falsetti L, Viticchi G, Buratti L, Grigioni F, Capucci A, Silvestrini M. Interactions between atrial fibrillation, cardiovascular risk factors, and ApoE genotype in promoting cognitive decline in patients with Alzheimer’s disease: a prospective cohort study. J Alzheimers Dis. 2018;62(2):713–25. https://doi.org/10.3233/JAD-170544.

    Article  CAS  PubMed  Google Scholar 

  28. Stefansdottir H, Arnar DO, Aspelund T, Sigurdsson S, Jonsdottir MK, Hjaltason H, Launer LJ, Gudnason V. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts. Stroke. 2013;44(4):1020–5. https://doi.org/10.1161/STROKEAHA.12.679381.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Efimova I, Efimova N, Chernov V, Popov S, Lishmanov Y. Ablation and pacing: improving brain perfusion and cognitive function in patients with atrial fibrillation and uncontrolled ventricular rates. Pacing Clin Electrophysiol. 2012;35(3):320–6. https://doi.org/10.1111/j.1540-8159.2011.03277.x.

    Article  PubMed  Google Scholar 

  30. Medi C, Evered L, Silbert B, Teh A, Halloran K, Morton J, Kistler P, Kalman J. Subtle post-procedural cognitive dysfunction after atrial fibrillation ablation. J Am Coll Cardiol. 2013;62(6):531–9. https://doi.org/10.1016/j.jacc.2013.03.073.

    Article  PubMed  Google Scholar 

  31. Herm J, Fiebach JB, Koch L, Kopp UA, Kunze C, Wollboldt C, Brunecker P, Schultheiss HP, Schirdewan A, Endres M, Haeusler KG. Neuropsychological effects of MRI-detected brain lesions after left atrial catheter ablation for atrial fibrillation: long-term results of the MACPAF study. Circ Arrhythm Electrophysiol. 2013;6(5):843–50. https://doi.org/10.1161/CIRCEP.113.000174.

    Article  PubMed  Google Scholar 

  32. Schnabel RB, Michal M, Wilde S, Wiltink J, Wild PS, Sinning CR, Lubos E, Ojeda FM, Zeller T, Munzel T, Blankenberg S, Beutel ME. Depression in atrial fibrillation in the general population. PLoS One. 2013;8(12):e79109. https://doi.org/10.1371/journal.pone.0079109.

    Article  PubMed  PubMed Central  Google Scholar 

  33. von Eisenhart Rothe AF, Goette A, Kirchhof P, Breithardt G, Limbourg T, Calvert M, Baumert J, Ladwig KH. Depression in paroxysmal and persistent atrial fibrillation patients: a cross-sectional comparison of patients enroled in two large clinical trials. Europace. 2014;16(6):812–9. https://doi.org/10.1093/europace/eut361.

    Article  Google Scholar 

  34. Thompson TS, Barksdale DJ, Sears SF, Mounsey JP, Pursell I, Gehi AK. The effect of anxiety and depression on symptoms attributed to atrial fibrillation. Pacing Clin Electrophysiol. 2014;37(4):439–46. https://doi.org/10.1111/pace.12292.

    Article  PubMed  Google Scholar 

  35. Akintade BF, Chapa D, Friedmann E, Thomas SA. The influence of depression and anxiety symptoms on health-related quality of life in patients with atrial fibrillation and atrial flutter. J Cardiovasc Nurs. 2015;30(1):66–73. https://doi.org/10.1097/JCN.0000000000000107.

    Article  PubMed  Google Scholar 

  36. Efremidis M, Letsas KP, Lioni L, Giannopoulos G, Korantzopoulos P, Vlachos K, Dimopoulos NP, Karlis D, Bouras G, Sideris A, Deftereos S. Association of quality of life, anxiety, and depression with left atrial ablation outcomes. Pacing Clin Electrophysiol. 2014;37(6):703–11. https://doi.org/10.1111/pace.12420.

    Article  PubMed  Google Scholar 

  37. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. https://doi.org/10.1093/eurheartj/eht151.

    Article  PubMed  Google Scholar 

  38. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol. 1999;26(7):563–5.

    Article  CAS  PubMed  Google Scholar 

  39. Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, Joffres M, Kastarinen M, Poulter N, Primatesta P, Rodríguez-Artalejo F, Stegmayr B, Thamm M, Tuomilehto J, Vanuzzo D, Vescio F. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003;289(18):2363–9.

    Article  PubMed  Google Scholar 

  40. Elias MF, Wolf PA, D’Agostino RB, Cobb J, White LR. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham study. Am J Epidemiol. 1993;138(6):353–64.

    Article  CAS  PubMed  Google Scholar 

  41. Waldstein SR. The relation of hypertension to cognitive function. Curr Dir Psychol Sci. 2003;12(1):9–12.

    Article  Google Scholar 

  42. Fujishima M, Ibayashi S, Fujii K, Mori S. Cerebral blood flow and brain function in hypertension. Hypertens Res. 1995;18(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  43. Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-Mazoyer N, Bousser MG, Anderson C, Mazoyer B, Tzourio C, PROGRESS MRI Substudy Investigators. Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. Stroke. 2009;40(6):2219–21. https://doi.org/10.1161/STROKEAHA.108.540633.

    Article  PubMed  Google Scholar 

  44. Shokouhi M, Qiu D, Samman Tahhan A, Quyyumi AA, Hajjar I. Differential associations of diastolic and systolic pressures with cerebral measures in older individuals with mild cognitive impairment. Am J Hypertens. 2018; https://doi.org/10.1093/ajh/hpy104.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Godin O, Tzourio C, Maillard P, Mazoyer B, Dufouil C. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon magnetic resonance imaging study. Circulation. 2011;123(3):266–73. https://doi.org/10.1161/CIRCULATIONAHA.110.961052.

    Article  PubMed  Google Scholar 

  46. Goel R, Bhat SA, Rajasekar N, Hanif K, Nath C, Shukla R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: protection by angiotensin converting enzyme inhibition. Pharmacol Biochem Behav. 2015;133:132–45. https://doi.org/10.1016/j.pbb.2015.04.002.

    Article  CAS  PubMed  Google Scholar 

  47. de Frias CM, Schaie KW, Willis SL. Hypertension moderates the effect of APOE on 21-year cognitive trajectories. Psychol Aging. 2014;29(2):431–9. https://doi.org/10.1037/a0036828.

    Article  PubMed  Google Scholar 

  48. Pavlovic AM, Pekmezovic T, Trajkovic JZ, Tomic G, Cvitan E, Sternic N. Increased risk of cognitive impairment and more severe brain lesions in hypertensive compared to non-hypertensive patients with cerebral small vessel disease. J Clin Hypertens (Greenwich). 2018; https://doi.org/10.1111/jch.13357.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perna R. Hypertension and its effects on brain functioning and cognition. Hypertens Curr Concepts Ther. 2016;1(1):1–2. https://doi.org/10.15761/HCCT.1000103.

    Article  Google Scholar 

  50. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the heart failure association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200. https://doi.org/10.1093/eurheartj/ehw128.

    Article  PubMed  Google Scholar 

  51. Jhund PS, Macintyre K, Simpson CR, Lewsey JD, Stewart S, Redpath A, Chalmers JW, Capewell S, McMurray JJ. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation. 2009;119(4):515–23. https://doi.org/10.1161/CIRCULATIONAHA.108.812172.

    Article  PubMed  Google Scholar 

  52. Grubb NR, Simpson C, Fox KA. Memory function in patients with stable, moderate to severe cardiac failure. Am Heart J. 2000;140(1):E1–5.

    Article  CAS  PubMed  Google Scholar 

  53. Huijts M, van Oostenbrugge RJ, Duits A, Burkard T, Muzzarelli S, Maeder MT, Schindler R, Pfisterer ME, Brunner-La Rocca HP, Investigators TIME-CHF. Cognitive impairment in heart failure: results from the trial of intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME-CHF) randomized trial. Eur J Heart Fail. 2013;15(6):699–707. https://doi.org/10.1093/eurjhf/hft020.

    Article  CAS  PubMed  Google Scholar 

  54. Hollander SA, Callus E. Cognitive and psycholologic considerations in pediatric heart failure. J Card Fail. 2014;20(10):782–5. https://doi.org/10.1016/j.cardfail.2014.07.001.

    Article  PubMed  Google Scholar 

  55. Sauvé MJ, Lewis WR, Blankenbiller M, Rickabaugh B, Pressler SJ. Cognitive impairments in chronic heart failure: a case controlled study. J Card Fail. 2009;15(1):1–10. https://doi.org/10.1016/j.cardfail.2008.08.007.

    Article  PubMed  Google Scholar 

  56. Callegari S, Majani G, Giardini A, Pierobon A, Opasich C, Cobelli F, Tavazzi L. Relationship between cognitive impairment and clinical status in chronic heart failure patients. Monaldi Arch Chest Dis. 2002;58(1):19–25.

    CAS  PubMed  Google Scholar 

  57. Uthamalingam S, Gurm GS, Daley M, Flynn J, Capodilupo R. Usefulness of acute delirium as a predictor of adverse outcomes in patients >65 years of age with acute decompensated heart failure. Am J Cardiol. 2011;108(3):402–8. https://doi.org/10.1016/j.amjcard.2011.03.059.

    Article  PubMed  Google Scholar 

  58. Alosco ML, Spitznagel MB, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, van Dulmen M, Hughes J, Rosneck J, Gunstad J. Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra. 2012;2(1):88–98. https://doi.org/10.1159/000343222.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hjelm C, Broström A, Dahl A, Johansson B, Fredrikson M, Strömberg A. Factors associated with increased risk for dementia in individuals age 80 years or older with congestive heart failure. J Cardiovasc Nurs. 2014;29(1):82–90. https://doi.org/10.1097/JCN.0b013e318275543d.

    Article  PubMed  Google Scholar 

  60. Alosco ML, Hayes SM. Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease. Heart Fail Rev. 2015;20(5):561–71. https://doi.org/10.1007/s10741-015-9488-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harkness K, Heckman GA, Akhtar-Danesh N, Demers C, Gunn E, McKelvie RS. Cognitive function and self-care management in older patients with heart failure. Eur J Cardiovasc Nurs. 2014;13(3):277–84. https://doi.org/10.1177/1474515113492603.

    Article  PubMed  Google Scholar 

  62. Willis MS, Patterson C. Proteotoxicity and cardiac dysfunction – Alzheimer’s disease of the heart? N Engl J Med. 2013;368(5):455–64. https://doi.org/10.1056/NEJMra1106180.

    Article  CAS  PubMed  Google Scholar 

  63. Athilingam P, Moynihan J, Chen L, D’Aoust R, Groer M, Kip K. Elevated levels of interleukin 6 and C-reactive protein associated with cognitive impairment in heart failure. Congest Heart Fail. 2013;19(2):92–8. https://doi.org/10.1111/chf.12007.

    Article  CAS  PubMed  Google Scholar 

  64. Alves TC, Rays J, Fráguas R Jr, Wajngarten M, Meneghetti JC, Prando S, Busatto GF. Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT. J Neuroimaging. 2005;15(2):150–6.

    PubMed  Google Scholar 

  65. Kalaria VG, Passannante MR, Shah T, Modi K, Weisse AB. Effect of mitral regurgitation on left ventricular thrombus formation in dilated cardiomyopathy. Am Heart J. 1998;135(2 Pt 1):215–20.

    Article  CAS  PubMed  Google Scholar 

  66. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012;33(14):1769–76. https://doi.org/10.1093/eurheartj/ehr467.

    Article  PubMed  Google Scholar 

  67. Hajduk AM, Kiefe CI, Person SD, Gore JG, Saczynski JS. Cognitive change in heart failure: a systematic review. Circ Cardiovasc Qual Outcomes. 2013;6(4):451–60. https://doi.org/10.1161/CIRCOUTCOMES.113.000121.

    Article  PubMed  Google Scholar 

  68. Alosco ML, Spitznagel MB, Cohen R, Sweet LH, Josephson R, Hughes J, Rosneck J, Gunstad J. Better adherence to treatment recommendations in heart failure predicts improved cognitive function at a one-year follow-up. J Clin Exp Neuropsychol. 2014;36(9):956–66. https://doi.org/10.1080/13803395.2014.957167.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Davis KK, Allen JK. Identifying cognitive impairment in heart failure: a review of screening measures. Heart Lung. 2013;42(2):92–7. https://doi.org/10.1016/j.hrtlng.2012.11.003.

    Article  PubMed  Google Scholar 

  70. Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006;48(8):1527–37.

    Article  PubMed  Google Scholar 

  71. Moudgil R, Haddad H. Depression in heart failure. Curr Opin Cardiol. 2013;28(2):249–58. https://doi.org/10.1097/HCO.0b013e32835ced80.

    Article  PubMed  Google Scholar 

  72. Diez-Quevedo C, Lupón J, González B, Urrutia A, Cano L, Cabanes R, Altimir S, Coll R, Pascual T, de Antonio M, Bayes-Genis A. Depression, antidepressants, and long-term mortality in heart failure. Int J Cardiol. 2013;167(4):1217–25. https://doi.org/10.1016/j.ijcard.2012.03.143.

    Article  PubMed  Google Scholar 

  73. Newhouse A, Jiang W. Heart failure and depression. Heart Fail Clin. 2014;10(2):295–304. https://doi.org/10.1016/j.hfc.2013.10.004.

    Article  PubMed  Google Scholar 

  74. Tousoulis D, Antonopoulos AS, Antoniades C, Saldari C, Stefanadi E, Siasos G, Stougianos P, Plastiras A, Korompelis P, Stefanadis C. Role of depression in heart failure – choosing the right antidepressive treatment. Int J Cardiol. 2010;140(1):12–8. https://doi.org/10.1016/j.ijcard.2009.05.022.

    Article  PubMed  Google Scholar 

  75. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of disease study 2015. Lancet. 2016;388(10053):1459–544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  76. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization; 2011.

    Google Scholar 

  77. Centers for Disease Control and Prevention (CDC). Prevalence of coronary heart disease – United States, 2006–2010. MMWR Morb Mortal Wkly Rep. 2011;60(40):1377–81.

    Google Scholar 

  78. Deckers K, Schievink SHJ, Rodriquez MMF, van Oostenbrugge RJ, van Boxtel MPJ, Verhey FRJ, Köhler S. Coronary heart disease and risk for cognitive impairment or dementia: systematic review and meta-analysis. PLoS One. 2017;12(9):e0184244. https://doi.org/10.1371/journal.pone.0184244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng L, Mack WJ, Chui HC, Heflin L, Mungas D, Reed B, DeCarli C, Weiner MW, Kramer JH. Coronary artery disease is associated with cognitive decline independent of changes on magnetic resonance imaging in cognitively normal elderly adults. J Am Geriatr Soc. 2012;60(3):499–504. https://doi.org/10.1111/j.1532-5415.2011.03839.x.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Selnes OA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, McKhann GM. Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg. 2009;88(2):445–54. https://doi.org/10.1016/j.athoracsur.2009.04.061.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Weinstein G, Goldbourt U, Tanne D. Angina pectoris severity among coronary heart disease patients is associated with subsequent cognitive impairment. Alzheimer Dis Assoc Disord. 2015;29(1):6–11. https://doi.org/10.1097/WAD.0000000000000038.

    Article  PubMed  Google Scholar 

  82. Justin BN, Turek M, Hakim AM. Heart disease as a risk factor for dementia. Clin Epidemiol. 2013;5:135–45. https://doi.org/10.2147/CLEP.S30621.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, Aldershvile J. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32(11):2530–3.

    Article  CAS  PubMed  Google Scholar 

  84. Ikram MA, van Oijen M, de Jong FJ, Kors JA, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Unrecognized myocardial infarction in relation to risk of dementia and cerebral small vessel disease. Stroke. 2008;39(5):1421–6. https://doi.org/10.1161/STROKEAHA.107.501106.

    Article  PubMed  Google Scholar 

  85. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666. https://doi.org/10.1136/bmj.c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Barekatain M, Askarpour H, Zahedian F, Walterfang M, Velakoulis D, Maracy MR, Jazi MH. The relationship between regional brain volumes and the extent of coronary artery disease in mild cognitive impairment. J Res Med Sci. 2014;19(8):739–45.

    PubMed  PubMed Central  Google Scholar 

  87. Liu C, Liu Y, Yang Z. Myocardial infarction induces cognitive impairment by increasing the production of hydrogen peroxide in adult rat hippocampus. Neurosci Lett. 2014;560:112–6. https://doi.org/10.1016/j.neulet.2013.12.027.

    Article  CAS  PubMed  Google Scholar 

  88. Goto T, Maekawa K. Cerebral dysfunction after coronary artery bypass surgery. J Anesth. 2014;28(2):242–8. https://doi.org/10.1007/s00540-013-1699-0.

    Article  PubMed  Google Scholar 

  89. Habib S, Au K, Afridi MI, Saeed A, Jan AF, Amjad N. Frequency and predictors of cognitive decline in patients undergoing coronary artery bypass graft surgery. J Coll Physicians Surg Pak. 2014;24(8):543–8. https://doi.org/08.2014/JCPSP.543548.

  90. Hoth KF, Poppas A, Ellison KE, Paul RH, Sokobin A, Cho Y, Cohen RA. Link between change in cognition and left ventricular function following cardiac resynchronization therapy. J Cardiopulm Rehabil Prev. 2010;30(6):401–8. https://doi.org/10.1097/HCR.0b013e3181e1739a.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Burkauskas J, Noreikaite A, Bunevicius A, Brozaitiene J, Neverauskas J, Mickuviene N, Bunevicius R. Beta-1-selective Beta-blockers and cognitive functions in patients with coronary artery disease: a cross-sectional study. J Neuropsychiatry Clin Neurosci. 2016;28(2):143–6. https://doi.org/10.1176/appi.neuropsych.15040088.

    Article  PubMed  Google Scholar 

  92. Burkauskas J, Brozaitiene J, Bunevicius A, Neverauskas J, Zaliunaite V, Bunevicius R. Association of Depression, anxiety, and type D personality with cognitive function in patients with coronary artery disease. Cogn Behav Neurol. 2016;29(2):91–9. https://doi.org/10.1097/WNN.0000000000000093.

    Article  PubMed  Google Scholar 

  93. Denollet J, Freedland KE, Carney RM, de Jonge P, Roest AM. Cognitive-affective symptoms of depression after myocardial infarction: different prognostic importance across age groups. Psychosom Med. 2013;75(7):701–8. https://doi.org/10.1097/PSY.0b013e31829dbd36.

    Article  PubMed  Google Scholar 

  94. Levine DA, Davydow DS, Hough CL, Langa KM, Rogers MA, Iwashyna TJ. Functional disability and cognitive impairment after hospitalization for myocardial infarction and stroke. Circ Cardiovasc Qual Outcomes. 2014;7(6):863–71. https://doi.org/10.1161/HCQ.0000000000000008.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Patel N, Minhas JS, Chung EM. Risk factors associated with cognitive decline after cardiac surgery: a systematic review. Cardiovasc Psychiatry Neurol. 2015;2015:370612. https://doi.org/10.1155/2015/370612.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607. https://doi.org/10.1056/NEJMoa1008232.

    Article  CAS  PubMed  Google Scholar 

  97. Wan B, Rahnavardi M, Tian DH, Phan K, Munkholm-Larsen S, Bannon PG, Yan TD. A meta-analysis of MitraClip system versus surgery for treatment of severe mitral regurgitation. Ann Cardiothorac Surg. 2013;2(6):683–92. https://doi.org/10.3978/j.issn.2225-319X.2013.11.02.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ghanem A, Kocurek J, Sinning JM, Wagner M, Becker BV, Vogel M, Schröder T, Wolfsgruber S, Vasa-Nicotera M, Hammerstingl C, Schwab JO, Thomas D, Werner N, Grube E, Nickenig G, Müller A. Cognitive trajectory after transcatheter aortic valve implantation. Circ Cardiovasc Interv. 2013;6(6):615–24. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000429.

    Article  PubMed  Google Scholar 

  99. Barth S, Hamm K, Fodor S, Reents W, Kerber S, Halbfass P, Hautmann MB, Schieffer B, Soda H. Incidence and clinical impact of cerebral lesions after the MitraClip® procedure. J Heart Valve Dis. 2017;26(2):175–84.

    PubMed  Google Scholar 

  100. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, ESC Scientific Document Group. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317.

    Article  PubMed  Google Scholar 

  101. White J, Hopkins RO, Glissmeyer EW, Kitterman N, Elliott CG. Cognitive, emotional, and quality of life outcomes in patients with pulmonary arterial hypertension. Respir Res. 2006;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Somaini G. Disease-targeted treatment improves cognitive function in patients with precapillary pulmonary hypertension. Respiration. 2015;90:376–83.

    Article  PubMed  Google Scholar 

  103. Halank M, Einsle F, Lehman S, Bremer H, Ewert R, Wilkens H, Meyer FJ, Grünig E, Seyfarth HJ, Kolditz M, Wieder G, Höffken G, Köllner V. Exercise capacity affects quality of life in patients with pulmonary hypertension. Lung. 2013;191(4):337–43. https://doi.org/10.1007/s00408-013-9472-6.

    Article  CAS  PubMed  Google Scholar 

  104. Chin KM, Gomberg-Maitland M, Channick RN, Cuttica MJ, Fischer A, Frantz RP, Hunsche E, Kleinman L, McConnell JW, McLaughlin VV, Miller CE, Zamanian RT, Zastrow MS, Badesch DB. Psychometric validation of the pulmonary arterial hypertension-symptoms and impact (PAH-SYMPACT) questionnaire: results of the SYMPHONY trial. Chest. 2018;154:pii: S0012-3692(18)30649-4. https://doi.org/10.1016/j.chest.2018.04.027.

    Article  Google Scholar 

  105. Vanini B, Grazioli V, Sciortino A, Pin M, Merli VN, Celentano A, Parisi I, Klersy C, Petrucci L, Salati M, Politi P, D’Armini AM. Neuropsychological outcomes after pulmonary endarterectomy using moderate hypothermia and periodic circulatory arrest. J Heart Lung Transplant. 2018;37(7):860–4. https://doi.org/10.1016/j.healun.2018.02.007.

    Article  PubMed  Google Scholar 

  106. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, Wnent J, Tjelmeland IB, Ortiz FR, Maurer H, Baubin M, Mols P, Hadžibegović I, Ioannides M, Škulec R, Wissenberg M, Salo A, Hubert H, Nikolaou NI, Lóczi G, Svavarsdóttir H, Semeraro F, Wright PJ, Clarens C, Pijls R, Cebula G, Correia VG, Cimpoesu D, Raffay V, Trenkler S, Markota A, Strömsöe A, Burkart R, Perkins GD, Bossaert LL, Collaborators ERCONE. EuReCa ONE-27 nations, ONE Europe, ONE registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016;105:188–95. https://doi.org/10.1016/j.resuscitation.2016.06.004.

    Article  PubMed  Google Scholar 

  107. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med. 2013;39(11):1972–80. https://doi.org/10.1007/s00134-013-3043-4.

    Article  PubMed  Google Scholar 

  108. Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337–42. https://doi.org/10.1016/j.resuscitation.2012.09.015.

    Article  PubMed  Google Scholar 

  109. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin CD, Bottiger BW, Friberg H, Sunde K, Sandroni C. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–22. https://doi.org/10.1016/j.resuscitation.2015.07.018.

    Article  PubMed  Google Scholar 

  110. Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305. https://doi.org/10.1016/j.resuscitation.2008.10.034.

    Article  PubMed  Google Scholar 

  111. Lilja G, Nielsen N, Friberg H, Horn J, Kjaergaard J, Nilsson F, Pellis T, Wetterslev J, Wise MP, Bosch F, Bro-Jeppesen J, Brunetti I, Buratti AF, Hassager C, Hofgren C, Insorsi A, Kuiper M, Martini A, Palmer N, Rundgren M, Rylander C, van der Veen A, Wanscher M, Watkins H, Cronberg T. Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33°C versus 36°C. Circulation. 2015;131(15):1340–9. https://doi.org/10.1161/CIRCULATIONAHA.114.014414.

    Article  PubMed  Google Scholar 

  112. Sulzgruber P, Kliegel A, Wandaller C, Uray T, Losert H, Laggner AN, Sterz F, Kliegel M. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning. Resuscitation. 2015;88:120–5. https://doi.org/10.1016/j.resuscitation.2014.11.009.

    Article  PubMed  Google Scholar 

  113. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24(1):1–21.

    Article  PubMed  Google Scholar 

  114. Grubb NR, Fox KA, Smith K, Best J, Blane A, Ebmeier KP, Glabus MF, O’Carroll RE. Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke. 2000;31(7):1509–14.

    Article  CAS  PubMed  Google Scholar 

  115. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G, Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Trial Investigators TTM. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206. https://doi.org/10.1056/NEJMoa1310519.

    Article  CAS  PubMed  Google Scholar 

  116. Froehler MT, Geocadin RG. Hypothermia for neuroprotection after cardiac arrest: mechanisms, clinical trials and patient care. J Neurol Sci. 2007;261(1–2):118–26.

    Article  PubMed  Google Scholar 

  117. McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, Ergin MA, Griepp RB. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg. 1999;67(6):1895–9; discussion 1919–21

    Article  CAS  PubMed  Google Scholar 

  118. Bro-Jeppesen J, Kjaergaard J, Wanscher M, Nielsen N, Friberg H, Bjerre M, Hassager C. The inflammatory response after out-of-hospital cardiac arrest is not modified by targeted temperature management at 33 °C or 36 °C. Resuscitation. 2014;85(11):1480–7. https://doi.org/10.1016/j.resuscitation.2014.08.007.

    Article  PubMed  Google Scholar 

  119. Cronberg T, Lilja G, Horn J, Kjaergaard J, Wise MP, Pellis T, Hovdenes J, Gasche Y, Åneman A, Stammet P, Erlinge D, Friberg H, Hassager C, Kuiper M, Wanscher M, Bosch F, Cranshaw J, Kleger GR, Persson S, Undén J, Walden A, Winkel P, Wetterslev J, Nielsen N, Trial Investigators TTM. Neurologic function and health-related quality of life in patients following targeted temperature management at 33°C vs 36°C after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA Neurol. 2015;72(6):634–41. https://doi.org/10.1001/jamaneurol.2015.0169.

    Article  PubMed  Google Scholar 

  120. Lilja G, Nielsen N, Bro-Jeppesen J, Dunford H, Friberg H, Hofgren C, Horn J, Insorsi A, Kjaergaard J, Nilsson F, Pelosi P, Winters T, Wise MP, Cronberg T. Return to work and participation in society after out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2018;11(1):e003566. https://doi.org/10.1161/CIRCOUTCOMES.117.003566.

    Article  PubMed  Google Scholar 

  121. Wachelder EM, Moulaert VR, van Heugten C, Verbunt JA, Bekkers SC, Wade DT. Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation. 2009;80(5):517–22. https://doi.org/10.1016/j.resuscitation.2009.01.020.

    Article  CAS  PubMed  Google Scholar 

  122. Baldi E, Vanini B, Savastano S, Danza AI, Martinelli V, Politi P. Depression after a cardiac arrest: an unpredictable issue to always investigate for. Resuscitation. 2018;127:e10–1. https://doi.org/10.1016/j.resuscitation.2018.03.027.

    Article  PubMed  Google Scholar 

  123. Lilja G, Nilsson G, Nielsen N, Friberg H, Hassager C, Koopmans M, Kuiper M, Martini A, Mellinghoff J, Pelosi P, Wanscher M, Wise MP, Östman I, Cronberg T. Anxiety and depression among out-of-hospital cardiac arrest survivors. Resuscitation. 2015;97:68–75. https://doi.org/10.1016/j.resuscitation.2015.09.389.

    Article  CAS  PubMed  Google Scholar 

  124. Haywood K, Whitehead L, Nadkarni VM, Achana F, Beesems S, Böttiger BW, Brooks A, Castrén M, Ong MEH, Hazinski MF, Koster RW, Lilja G, Long J, Monsieurs KG, Morley PT, Morrison L, Nichol G, Oriolo V, Saposnik G, Smyth M, Spearpoint K, Williams B, Perkins GD, Collaborators COSCA. COSCA (Core outcome set for cardiac arrest) in adults: an advisory statement from the international liaison committee on resuscitation. Resuscitation. 2018;127:147–63. https://doi.org/10.1016/j.resuscitation.2018.03.022.

    Article  PubMed  Google Scholar 

  125. Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C, Horn J, Nolan JP, Rossetti AO, Soar J. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014;85(12):1779–89.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Baldi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baldi, E., Savastano, S. (2019). Consequences of Altered Cardiac Activity on Brain Activity. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics