Skip to main content

A Construction for \(\{0,1,-1\}\) Orthogonal Matrices Visualized

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

  • 625 Accesses

Abstract

Propus is a construction for orthogonal \(\pm 1\) matrices, which is based on a variation of the Williamson array, called the propus array

$$\begin{aligned} \left[ \begin{matrix} A&{} B &{} B &{} D \\ B&{} D &{} -A &{}-B \\ B&{} -A &{} -D &{} B \\ D&{} -B &{} B &{}-A \end{matrix} \right] . \end{aligned}$$

This array showed how a picture made is easy to see the construction method. We have explored further how a picture is worth ten thousand words.

We give variations of the above array to allow for more general matrices than symmetric Williamson propus matrices. One such is the Generalized Propus Array (GP).

Dedicated to the Unforgettable Mirka Miller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balonin, N.A., Seberry, J.: A review and new symmetric conference matrices. Informatsionno-upravliaiushchie sistemy, 71(4), 2–7 (2014)

    Google Scholar 

  2. Balonin, N.A., Seberry, J.: Two infinite families of symmetric Hadamard matrices. Australas. Comb. 69(3), 349–357 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Baumert, L.D.: Cyclic Difference Sets. LNM, vol. 182. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0061260

    Book  MATH  Google Scholar 

  4. Cohn, J.H.E.: A \(D\)-optimal design of order 102. Discret. Math. 1(102), 61–65 (1992)

    Article  MathSciNet  Google Scholar 

  5. Di Matteo, O., Djoković, D., Kotsireas, I.S.: Symmetric hadamard matrices of order 116 and 172 exist. Spec. Matrices 3, 227–234 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Djoković, D.Z.: On maximal \((1, -1)\)-matrices of order \(2n\), \(n\) odd. Radovi Matematicki 7(2), 371–378 (1991)

    MathSciNet  Google Scholar 

  7. Djoković, D.Z.: Some new \(D\)-optimal designs. Australas. J. Comb. 15, 221–231 (1997)

    MathSciNet  Google Scholar 

  8. Djoković, D.Z.: Cyclic \((v; r, s; \lambda )\) difference families with two base blocks and \(v \le 50\). Ann. Comb. 15(2), 233–254 (2011)

    Article  MathSciNet  Google Scholar 

  9. Djoković, D.Z., Kotsireas, I.S.: New results on \(D\)-optimal matrices. J. Comb. Des. 20, 278–289 (2012)

    Article  MathSciNet  Google Scholar 

  10. Djoković, D.Z., Kotsireas, I.S.: email communication from I. Kotsireas, 3 August 2014 1:13 pm

    Google Scholar 

  11. Fletcher, R.J., Gysin, M., Seberry, J.: Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Comb. 23, 75–86 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Fletcher, R.J., Koukouvinos, C., Seberry, J.: New skew-Hadamard matrices of order and new \(D\)-optimal designs of order \(2 \cdot 59\). Discret. Math. 286(3), 251–253 (2004)

    Article  Google Scholar 

  13. Roderick, R.J., Seberry, J.: New \(D\)-optimal designs of order 110. Australas. J. Comb. 23, 49–52 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. des Sci. Math. 17, 240–246 (1893)

    MATH  Google Scholar 

  15. Gysin, M.: New \(D\)-optimal designs via cyclotomy and generalised cyclotomy. Australas. J. Comb. 15, 247–255 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Gysin, M.: Combinatorial Designs, Sequences and Cryptography, Ph.D. Thesis, University of Wollongong (1997)

    Google Scholar 

  17. Gysin, M., Seberry, J.: An experimental search and new combinatorial designs via a generalisation of cyclotomy. J. Combin. Math. Combin. Comput. 27, 143–160 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Holzmann, W.H., Kharaghani, H.: A \(D\)-optimal design of order 150. Discret. Math. 190(1), 265–269 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kotsireas, I.S., Pardalos, P.M.: \(D\)-optimal matrices via quadratic integer optimization. J. Heuristics 19(4), 617–627 (2013)

    Article  Google Scholar 

  20. Koukouvinos, C., Kounias, S., Seberry, J.: Supplementary difference sets and optimal designs. Discret. Math. 88(1), 49–58 (1991)

    Article  MathSciNet  Google Scholar 

  21. Koukouvinos, C., Seberry, J., Whiteman, A.L., Xia, M.: Optimal designs, supplementary difference sets and multipliers. J. Stat. Plan. Inference 62(1), 81–90 (1997)

    Article  MathSciNet  Google Scholar 

  22. Georgiou, S., Koukouvinos, C., Seberry, J.: Hadamard matrices, orthogonal designs and construction algorithms. In: Wallis, W.D. (ed.) Designs 2002: Further Combinatorial and Constructive Design Theory, pp. 133–205. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  23. Geramita, A.V., Seberry, J., Designs, O.: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel (1979)

    MATH  Google Scholar 

  24. Hall Jr., M.: A survey of difference sets. Proc. Am. Math. Soc. 7, 975–986 (1956)

    Article  MathSciNet  Google Scholar 

  25. Hall Jr., M.: Combinatorial Theory, 2nd edn. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  26. Miyamoto, M.: A construction for Hadamard matrices. J. Comb. Theoy. Ser. A 57, 86–108 (1991)

    Article  MathSciNet  Google Scholar 

  27. Mitrouli, M.: \(D\)-optimal designs embedded in Hadamard matrices and their effect on the pivot patterns. Linear Algebra App. 434, 1751–1772 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)

    Article  Google Scholar 

  29. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MathSciNet  Google Scholar 

  30. Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. Wiley, New York (1992)

    Google Scholar 

  31. Turyn, R.J.: An infinite class of Williamson matrices. J. Comb. Theory Ser. A. 12, 319–321 (1972)

    Article  MathSciNet  Google Scholar 

  32. Sloane, N.J.A.: AT&T on-line encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences/

  33. Wallis, J.S.: Williamson matrices of even order. In: Holton, D.A. (ed.) Combinatorial Mathematics. Lecture Notes in Mathematics, vol. 403, pp. 132–142. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0057387

    Chapter  Google Scholar 

  34. Wallis, W.D.: Room Squares. Combinatorics: Room Squares, Sum-Free Sets, Hadamard Matrices. LNM, vol. 292, pp. 30–121. Springer, Heidelberg (1972). https://doi.org/10.1007/BFb0069907

    Google Scholar 

  35. Whiteman, A.L.: A family of \(D\)-optimal designs. Ars Comb. 30, 23–26 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Yamada, M.: On the Williamson type \(j\) matrices of order \(4.29\), \(4.41\), and \(4.37\). J. Comb. Theory, Ser. A, 27, 378–381 (1979)

    Google Scholar 

  37. Wallis, J.S.: On the existence of Hadamard matrices. J. Comb. Theory (Ser. A), 21, 186–195 (1976)

    Article  MathSciNet  Google Scholar 

  38. Craigen, R.: Signed groups, sequences and the asymptotic existence of Hadamard matrices. J. Comb. Theory (Ser. A), 71, 241–254 (1995)

    Article  MathSciNet  Google Scholar 

  39. Ghaderpour, E., Kharaghani, H.: The asymptotic existence of orthogonal designs. Australas. J. Combin. 58, 333–346 (2014)

    MathSciNet  MATH  Google Scholar 

  40. de Launey, W., Kharaghani, H.: On the asymptotic existence of cocyclic Hadamard matrices. J. Comb. Theory (Ser. A), 116(6), 1140–1153 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Seberry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balonin, N.A., Seberry, J. (2018). A Construction for \(\{0,1,-1\}\) Orthogonal Matrices Visualized. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics