Skip to main content

A Faster Implementation of Online Run-Length Burrows-Wheeler Transform

  • Conference paper
  • First Online:
Book cover Combinatorial Algorithms (IWOCA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10765))

Included in the following conference series:

  • 662 Accesses

Abstract

Run-length encoding Burrows-Wheeler Transformed strings, resulting in Run-Length BWT (RLBWT), is a powerful tool for processing highly repetitive strings. We propose a new algorithm for online RLBWT working in run-compressed space, which runs in \(O(n\lg r)\) time and \(O(r\lg n)\) bits of space, where n is the length of input string S received so far and r is the number of runs in the BWT of the reversed S. We improve the state-of-the-art algorithm for online RLBWT in terms of empirical construction time. Adopting the dynamic list for maintaining a total order, we can replace rank queries in a dynamic wavelet tree on a run-length compressed string by the direct comparison of labels in a dynamic list. The empirical result for various benchmarks show the efficiency of our algorithm, especially for highly repetitive strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or appending a character but constructing BWT for reversed string.

  2. 2.

    More sophisticated solutions can be found in [6, 11, 15], but none of them has been implemented to the best of our knowledge.

  3. 3.

    The basic idea of the algorithm originates from the work of RLFM+ index in [12].

  4. 4.

    See http://pizzachili.dcc.uchile.cl/repcorpus/statistics.pdf for statistics of the datasets.

  5. 5.

    https://github.com/boostorg/boost.

  6. 6.

    https://github.com/samtools/samtools.

  7. 7.

    https://github.com/simongog/sdsl-lite.

References

  1. DYNAMIC: Dynamic succinct/compressed data structures library. https://github.com/xxsds/DYNAMIC

  2. Online RLBWT. https://github.com/itomomoti/OnlineRLBWT

  3. Get-git-revisions: Get all revisions of a git repository. https://github.com/nicolaprezza/get-git-revisions

  4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19929-0_3

    Chapter  Google Scholar 

  5. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_17

    Chapter  MATH  Google Scholar 

  6. Bille, P., Cording, P.H., Gørtz, I.L., Skjoldjensen, F.R., Vildhøj, H.W., Vind, S.: Dynamic relative compression, dynamic partial sums, and substring concatenation. In: ISAAC, pp. 18:1–18:13 (2016)

    Google Scholar 

  7. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0_18

    Chapter  Google Scholar 

  8. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report, HP Labs (1994)

    Google Scholar 

  9. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees for optimal succinctness, and beyond. In: FOCS, pp. 184–196 (2005)

    Google Scholar 

  10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: FOCS, pp. 390–398 (2000)

    Google Scholar 

  11. Hon, W., Sadakane, K., Sung, W.: Succinct data structures for searchable partial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39), 5176–5186 (2011)

    Article  MathSciNet  Google Scholar 

  12. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

    Article  MathSciNet  Google Scholar 

  13. Munro, J.I., Nekrich, Y.: Compressed data structures for dynamic sequences. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 891–902. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_74

    Chapter  Google Scholar 

  14. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. SIAM J. Comput. 43(5), 1781–1806 (2014)

    Article  MathSciNet  Google Scholar 

  15. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM Trans. Algorithms 10(3), 16 (2014)

    Article  MathSciNet  Google Scholar 

  16. Policriti, A., Prezza, N.: Computing LZ77 in run-compressed space. In: DCC, pp. 23–32 (2016)

    Google Scholar 

  17. Prezza, N.: A framework of dynamic data structures for string processing. In: SEA (2017 to appear)

    Google Scholar 

  18. Sirén, J.: Compressed Full-Text Indexes for Highly Repetitive Collections. Ph.D. thesis, University of Helsinki (2012)

    Google Scholar 

  19. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-length compressed indexes are superior for highly repetitive sequence collections. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89097-3_17

    Chapter  Google Scholar 

  20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT 23(3), 337–349 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by JST CREST (Grant Number JPMJCR1402), and KAKENHI (Grant Numbers 17H01791 and 16K16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohno, T., Takabatake, Y., I, T., Sakamoto, H. (2018). A Faster Implementation of Online Run-Length Burrows-Wheeler Transform. In: Brankovic, L., Ryan, J., Smyth, W. (eds) Combinatorial Algorithms. IWOCA 2017. Lecture Notes in Computer Science(), vol 10765. Springer, Cham. https://doi.org/10.1007/978-3-319-78825-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78825-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78824-1

  • Online ISBN: 978-3-319-78825-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics