Skip to main content

Fishmeal Alternative Protein Sources for Aquaculture Feeds

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

Abstract

Aquaculture currently accounts for approximately 50% of fish consumed by humans. The future development of aquaculture will be greatly constrained by the increasing costs of fishmeal and fish oil. To remedy this situation, scientific research and feed manufacturers have made a significant progress by looking for alternative protein sources for use in fish diets in order to develop feeds that provide adequate nutrition for animals’ growth, while reducing to minimum the use of traditional sources of protein. This chapter aims at critically reviewing recent studies, carried out worldwide, about the effects of the inclusion of new protein sources as insect, poultry by-products, meat and bone meals and other protein sources alternative to fishmeal in aquafeeds. In particular, the impacts of these protein sources in terms of growth, nutrient digestibility, fillet quality traits and sensorial perception in the most important farmed marine and freshwater fish species are evaluated.

L. Gasco et al. Chemistry of Foods: Feeds for the Aquaculture SectorCurrent Situation and Alternative Sources, Springer Briefs in Chemistry of Foods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AAFCO (2010) In: Feed inspector’s manual, 5th edn. Association of American Feed Control Officials (AAFCO), Champaign

    Google Scholar 

  • Adewolu MA, Ikenweiwe NB, Mulero SM (2010) Evaluation of an animal protein mixture as a replacement for fishmeal in practical diets for fingerlings of Clarias gariepinus (Burchell, 1822). Isr J Aquacult Bamidgeh 5(62):237–244

    Google Scholar 

  • Aldrich G (2006) Rendered products in pet food. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 159–177

    Google Scholar 

  • Alexis M, Papaparaskeva-Papoutsoglou E, Theochari V (1985) Formulation of practical diets for rainbow trout Salmo gairdneri made by partial or complete substitution of fish meal by poultry-by products and certain plant by-products. Aquacult 50(1–2):61–73. https://doi.org/10.1016/0044-8486(85)90153-x

    Article  Google Scholar 

  • Anderson SJ (2000) Increasing calcium levels in cultured insects. Zoo Biol 19(1):1–9. https://doi.org/10.1002/(sici)1098-2361(2000)19:1<1:aid-zoo1>3.0.co;2-f

    Article  CAS  Google Scholar 

  • Aniebo AO, Erondu ES, Owen OJ (2008) Proximate composition of house fly larvae (Musca domestica) meal generated from mixture of cattle blood and wheat bran. Livest Res Rural Develop 20(12):1–5

    Google Scholar 

  • Aniebo AO, Erondu ES, Owen OJ (2009) Replacement of fish meal with maggot meal in African catfish (Clarias gariepinus) diets. Rev Cient UDO Agric 9:666–671

    Google Scholar 

  • Aniebo AO, Owen OJ (2010) Effects of age and method of drying on the proximate composition of house fly larvae (Musca domestica Linnaeus) meal (HFLM). Pak J Nutr 9(5):485–487. https://doi.org/10.3923/pjn.2010.485.487

    Article  CAS  Google Scholar 

  • Atse BC, Ossey YB, Koffi KM, Kouame PL (2014) Effects of feeding by-products; maggot meal, fish meal, soybean meal, blood meal and beef brain on growth, survival and carcass composition of African catfish, Heterobranchus longifilis Valenciennes, 1840 larvae under recirculating conditions. Int J Agric Innov Res 2(4):530–535

    Google Scholar 

  • Badillo D, Herzka SZ, Viana MT (2014) Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (d15 N) as natural tracers. PLoS ONE 9(9):e107523. https://doi.org/10.1371/journal.pone.0107523

    Article  CAS  Google Scholar 

  • Badillo Zapata D, Lazo JP, Herzka SZ, Viana MT (2016) The effect of substituting fishmeal with poultry by-product meal in diets for Totoaba macdonaldi juveniles. Aquacult Res 47(6):1778–1789. https://doi.org/10.1111/are.12636

    Article  CAS  Google Scholar 

  • Barreto-Curiel F, Parés-Sierra G, Correa-Reyes G, Durazo-Beltran E, Viana MT (2016) Total and partial fishmeal substitution by poultry by-product meal (petfood grade) and enrichment with acid fish silage in aquafeeds for juveniles of rainbow trout Oncorhynchus mykiss. Lat Am J Aquat Res 44(2):327–335. https://doi.org/10.3856/vol44-issue2-fulltext-13

    Article  Google Scholar 

  • Barroso FG, de Haro C, Sanchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C (2014) The potential of various insect species for use as food for fish. Aquacult 422–423:193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024

    Article  Google Scholar 

  • Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, De Marco M, Dabbou S, Schiavone A, Zoccarato I, Gasco L (2015) Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci 14(4):670–675. https://doi.org/10.4081/ijas.2015.4170

    Article  Google Scholar 

  • Belforti M, Lussiana C, Malfatto V, Rotolo L, Zoccarato I, Gasco L (2014) Two rearing substrates on Tenebrio molitor meal composition: issues on aquaculture and biodiesel production. In: Vantomme P, Munke C, van Huis A (eds) 1st international conference ‘insects to feed the world’. Wageningen University, Ede-Wageningen, The Netherlands, p 59

    Google Scholar 

  • Belluco S, Losasso C, Maggioletti M, Alonzi C, Paoletti M, Ricci A (2013) Edible insects in a food safety and nutritional perspective: a critical review. Compr Rev Food Sci Food Saf 12(3):296–313. https://doi.org/10.1111/1541-4337.12014

    Article  CAS  Google Scholar 

  • Bondari K, Sheppard DC (1981) Soldier fly larvae as feed in commercial fish production. Aquacult 24:103–109. https://doi.org/10.1016/0044-8486(81)90047-8

    Article  Google Scholar 

  • Bondari K, Sheppard DC (1987) Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquacult Res 18(3):209–220. https://doi.org/10.1111/j.1365-2109.1987.tb00141.x

    Article  Google Scholar 

  • Borgogno M, Dinnella C, Iaconisi V, Fusi R, Scarpaleggia C, Schiavone A, Monteleone E, Gasco L, Parisi G (2017) Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: effect on sensory profile according to static and dynamic evaluations. J Sci Food Agric 97(10):3402–3411. https://doi.org/10.1002/jsfa.8191

    Article  CAS  Google Scholar 

  • Bureau DP, Harris AM, Cho CY (1999) Apparent digestibility of rendered animal protein ingredients for rainbow trout (Oncorhynchus mykiss). Aquacult 180(3–4):345–358. https://doi.org/10.1016/s0044-8486(99)00210-0

    Article  CAS  Google Scholar 

  • Bureau DP (2006) Rendered products in fish aquaculture feeds. In: Meeker DL (ed) The National Renderers Association, Alexandria, pp 179-184

    Google Scholar 

  • Bureau DP, Harris AM, Bevan DJ, Simmons LA, Azevedo PA, Cho CY (2000) Feather meals and meat and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss) diets. Aquacult 181(3–4):281–291. https://doi.org/10.1016/s0044-8486(99)00232-x

    Article  Google Scholar 

  • Carvalho RAPLF, Ota RH, Kadry VO, Tacon AGJ, Lemos D (2016) Apparent digestibility of protein, energy and amino acids of six protein sources included at three levels in diets for juvenile white shrimp Litopenaeus vannamei reared in high performance conditions. Aquacult 465:223–234. https://doi.org/10.1016/j.aquaculture.2016.09.010

    Article  CAS  Google Scholar 

  • Castillo-Lopez E, Espinoza-Villegas RE, Viana MT (2016) In vitro digestion comparison from fish and poultry by-product meals from simulated digestive process at different times of the Pacific Bluefin tuna, Thunnus orientalis. Aquacult 458:187–194. https://doi.org/10.1016/j.aquaculture.2016.03.011

    Article  Google Scholar 

  • Chatzifotis S, Polemitou I, Divanach P, Antonopoulou E (2008) Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquacult 275(1–4):201–208. https://doi.org/10.1016/j.aquaculture.2007.12.013

    Article  CAS  Google Scholar 

  • Cheng ZJ, Hardy RW (2002) Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquacult 212(1–4):361–372. https://doi.org/10.1016/s0044-8486(02)00260-0

    Article  CAS  Google Scholar 

  • Cho CY, Slinger SJ (1979) Apparent digestibility measurement in feedstuffs for rainbow trout. In: Halver JE, Tiew K (eds) Finfish nutrition and fishfeed technology, vol. II. Heenemann, Berlin, pp 239–247

    Google Scholar 

  • Cruz-Suárez LE, Pena-Rodrıguez A, Nieto-Lopez M, Villarreal-Cabazos D, Tapia-Salazar M, Guajardo-Barbosa C, Ricque-Marie D (2007) Apparent amino acids, protein, and dry matter digestibility coefficients of six rendered animal products by the white shrimp Litopenaeus vannamei. In: Book of abstracts. Latin American & Caribbean chapter of the world aquaculture society, San Juan, Puerto Rico, 5–9 November 2007, p 32

    Google Scholar 

  • Dale N, Fancher B, Zumbado M, Villacres A (1993) Metabolizable energy content of poultry offal meal. J Appl Poultry Res 2(1):40–42. https://doi.org/10.1093/japr/2.1.40

    Article  Google Scholar 

  • Desai AR, Links MG, Collins SA, Mansfield GS, Drew MD, Van Kessel AG, Hill JE (2012) Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquacult 350–353:134–142. https://doi.org/10.1016/j.aquaculture.2012.04.005

    Article  CAS  Google Scholar 

  • Diener S, Gutiérrez FR, Zurbügg C, Tockner K (2009) Are larvae of the black soldier fly–Hermetia illucens—a financially viable option for organic waste management in Costa Rica? In: Proceedings of the Twelfth international waste management and landfill symposium ‘Sardinia 2009’, S. Margherita di Pula, Cagliari, Italy, 5–9 October 2009

    Google Scholar 

  • Dong FM, Hardy RW, Haard NF, Barrows FT, Rasco BA, Fairgrieve WT, Forster IP (1993) Chemical composition and protein digestibility of poultry by-product meals for salmonid diets. Aquacult 116(2–3):149–158. https://doi.org/10.1016/0044-8486(93)90005-j

    Article  CAS  Google Scholar 

  • Dong GF, Yang YO, Song XM, Yu L, Zhao TT, Huang GL, Hu ZJ, Zhang JL (2013) Comparative effects of dietary supplementation with maggot meal and soybean meal in gibel carp (Carassius auratus gibelio) and darkbarbel catfish (Pelteobagrus vachelli): growth performance and antioxidant responses. Aquacult Nutr 19(4):543–554. https://doi.org/10.1111/anu.12006

    Article  CAS  Google Scholar 

  • Dozier WA, Dale NM (2005) Metabolizable energy of feed-grade and pet food-grade poultryby-product meals. J Appl Poultry Res 14(2):349–351. https://doi.org/10.1093/japr/14.2.34

    Article  Google Scholar 

  • El-Haroun ER, Azevedo PA, Bureau DP (2009) High dietary incorporation levels of rendered animal protein ingredients on performance of rainbow trout Oncorhynchus mykiss (Walbaum, 1972). Aquacult 290(3–4):269–274. https://doi.org/10.1016/j.aquaculture.2009.02.014

    Article  CAS  Google Scholar 

  • El-Sayed AFM (2014) Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Rev Aquacult 6(4):241–255. https://doi.org/10.1111/raq.12042

    Article  Google Scholar 

  • Esteban MA, Cuesta A, Ortuño J, Meseguer J (2001) Immuno modulatory effects of dietary intake of chitin on gilthead sea bream (Sparus aurata L.) innate immune system. Fish Shellfish Immunol 11(4):303–315. https://doi.org/10.1006/fsim.2000.0315

    Article  CAS  Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture 2014. Opportunities and challenges. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Faruck MO, Yusof F, Chowdhury S (2016) An overview of antifungal peptides derived from insect. Peptides 80:80–88. https://doi.org/10.1016/j.peptides.2015.06.001

    Article  CAS  Google Scholar 

  • Fasakin EA, Balogun AM, Ajayi OO (2003) Evaluation of full-fat and defatted maggot meals in the feeding of Clariid catfish Clarias gariepinus fingerlings. Aquacult Res 34(9):733–738. https://doi.org/10.1046/j.1365-2109.2003.00876.x

    Article  Google Scholar 

  • Fasakin EA, Serwata RD, Davies SJ (2005) Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia. Aquacult 249:329–338

    Google Scholar 

  • Fowler LG (1991) Poultry by-product meal as a dietary protein source in fall chinook salmon diets. Aquacult 99(3–4):309–321. https://doi.org/10.1016/0044-8486(91)90251-2

    Article  Google Scholar 

  • Gallagher ML, Degani G (1988) Poultry meal and poultry oil as sources of protein and lipid in the diet of European eels (Anguilla anguilla). Aquacult 73(1–4):177–187. https://doi.org/10.1016/0044-8486(88)90052-x

    Article  CAS  Google Scholar 

  • Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou F, Mola P, Chatzifotis S (2016) Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 220:34–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003

    Article  CAS  Google Scholar 

  • Gasco L, Schiavone A, Mei T, Meneguz M, Gariglio M, Caimi C, Dama A, Renna M, Dabbou S, Bressan E, Montagnani M, Prato A, Bonaldo A, Prearo M, Gai F (2017) Effects of black soldier fly (Hermetia illucens) meal in sturgeons (Acipenser baerii) juveniles feeds: preliminary results. In: Proceedings of the aquaculture america conference, San Antonio, Texas, 19–22 February 2017

    Google Scholar 

  • Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu GS, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38(6):551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x

    Article  CAS  Google Scholar 

  • Gaylord TG, Rawles SD (2005) The modification of poultry by-product meal for use in hybrid striped bass Morone chrysops x M. saxatilis diets. J World Aquacult Soc 36(3): 363–374. https://doi.org/10.1111/j.1749-7345.2005.tb00340.x

  • Goda M, El-Haroun ER, Kabir Chowdhury MA (2007) Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks. Aquacult Res 38(3):279–287. https://doi.org/10.1111/j.1365-2109.2007.01663.x

    Article  CAS  Google Scholar 

  • Guillame J, Kaushik SJ, Bergot P, Métailler R (eds) (2001) Composition and nutritive value of raw materials. Appendix B. In: Nutrition and feeding of fish and crustaceans. Praxis Publishing Ltd, Chichester

    Google Scholar 

  • Guimarães IG, Pezzato LE, Barros MM (2008) Amino acid availability and protein digestibility of several protein sources for Nile tilapia Oreochromis niloticus. Aquacult Nutr 14(5):396–404. https://doi.org/10.1111/j.1365-2095.2007.00540.x

    Article  CAS  Google Scholar 

  • Hamilton CR, Kirstein D, Breitmeyer RE (2006) Public and Animal Health. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 71–94

    Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41(5):770–776. https://doi.org/10.1111/j.1365-2109.2009.02349.x

    Article  CAS  Google Scholar 

  • Henry M, Gasco L, Piccolo G, Fountoulaki E (2015) Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol 203:1–22. https://doi.org/10.1016/j.anifeedsci.2015.03.001

    Article  CAS  Google Scholar 

  • Henry M, Gasco L, Chatzifotis S, Piccolo G (2018) Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Comp Immunol 81:204–209. https://doi.org/10.1016/j.dci.2017.12.002

    Article  CAS  Google Scholar 

  • Hernández C, Olvera-Novoa MA, Hardy RW, Hermosillo A, Reyes C, González B (2010) Complete replacement of fishmeal by porcine and poultry by-product meals in practical diets for fingerlings Nile tilapia Oreochromis niloticus: digestibility and growth performance. Aquacult Nutr 16(1):44–53. https://doi.org/10.1111/j.1365-2095.2008.00639.x

    Article  CAS  Google Scholar 

  • Hernández C, Sanchez-Gutierrez Y, Hardy RW, Benitez-Hernandez A, Dominguez-Jimenez P, Gonzales-Rodriguez B, Osuna-Osuna L, Tortoledo O (2014) The potential of pet-grade poultry by-product meal to replace fish meal in the diet of the juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquacult Nutr 20(6):623–631. https://doi.org/10.1111/anu.12122

    Article  CAS  Google Scholar 

  • Hertrampf JW, Piedad-Pascual F (2000) Handbook of ingredients for aquaculture feeds. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Hoffman J, Johansen A, Steiro K, Gildberg A, Stenberg E, Bøgwald J (1997) Chitooligosaccharides stimulate Atlantic salmon, Salmo salar L., head kidney leukocytes to enhanced superoxide anion production in vitro. Comp Biochem Physiol B: Biochem Mol Biol 118(1):105–115. https://doi.org/10.1016/s0305-0491(97)00021-7

    Article  CAS  Google Scholar 

  • Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G (2017) Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquacult 476:49–58. https://doi.org/10.1016/j.aquaculture.2017.04.007

    Article  Google Scholar 

  • Idowu AB, Amusan AAS, Oyediran AG (2003) The response of Clarias gariepinus fingerlings (Burchell 1822) to the diet containing Housefly maggot (Musca domestica) (L.). Nigerian. J Anim Prod 30(1):139–144. https://doi.org/10.4314/njap.v30i1.3325

    Google Scholar 

  • Józefiak D, Józefiak A, Kierończyk B, Rawski M, Świątkiewicz S, Długos J, Engberg RM (2016) Insects-a natural nutrient source for poultry—a review. Ann Anim Sci 16(2):297–313. https://doi.org/10.1515/aoas-2016-0010

  • Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8(7):1988–2012. https://doi.org/10.3390/md8071988

    Article  CAS  Google Scholar 

  • Klasing KC, Thacker P, Lopez MA, Calvert CC (2000) Increasing the calcium content of mealworms (Tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J Zoo Wildl Med 31(4):512–517. https://doi.org/10.1638/1042-7260(2000)031[0512:itccom]2.0.co;2

    Article  CAS  Google Scholar 

  • Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C (2012) When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fishmeal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquacult 364–365:345–352. https://doi.org/10.1016/j.aquaculture.2012.08.041

    Article  CAS  Google Scholar 

  • Krogdahl A, Penn M, Thorsen J, Refstie S, Bakke AM (2010) Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult Res 41(3):333–344. https://doi.org/10.1111/j.1365-2109.2009.02426.x

    Article  CAS  Google Scholar 

  • Kureshy N, Davis DA, Aronld CD (2000) Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by product meal, enzyme digested poultry by-product meal in practical diets for juvenile red drum. North Am J Aquacult 62(4):266–272. https://doi.org/10.1577/1548-8454(2000)062<0266:profmw>2.0.co;2

    Article  Google Scholar 

  • Li K, Wang Y, Zheng ZX, Jiang RL, Xie NX, Bureau DP (2009) Replacing fish meal with rendered animal protein ingredients in diets for Malabar grouper, Epinephelus malabaricus, reared in net pens. J World Aquacult Soc 40(1):67–75. https://doi.org/10.1111/j.1749-7345.2008.00227.x

    Article  CAS  Google Scholar 

  • Li S, Ji H, Zhang B, Tian J, Zhou J, Yu H (2016) Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult 465:43–52. https://doi.org/10.1016/j.aquaculture.2016.08.020

    Article  CAS  Google Scholar 

  • Lin YH, Mui JJ (2016) Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquacult Res 48(5):2478–2485. https://doi.org/10.1111/are.13085

    Article  CAS  Google Scholar 

  • Lin S, Mao S, Guan Y, Luo L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquacult 342–343:36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009

    Article  CAS  Google Scholar 

  • Lock ER, Arsiwalla T, Waagbo R (2016) Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult Nutr 22(6):1202–1213. https://doi.org/10.1111/anu.12343

    Article  CAS  Google Scholar 

  • Ma X, Wang F (2014) Replacement of dietary fish meal with poultry by-product meal and soybean meal for golden pompano, Trachinotus ovatus, reared in net pens. J World Aquacult Soc 45(6):662–671. https://doi.org/10.1111/jwas.12154

    Article  CAS  Google Scholar 

  • Makkar HPS, Tran G, Heuze V, Ankers P (2014) State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol 197:1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008

    Article  CAS  Google Scholar 

  • Marono S, Piccolo G, Laponte R, Di Meo C, Attia YA, Nizza A, Bovera F (2015) In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci 14(3):338–343. https://doi.org/10.4081/ijas.2015.3889

    Article  CAS  Google Scholar 

  • Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, Stamer A, Leiber F (2016) Replacement of soybean cake by Hermetia illucens meal in diets for layers. J Insects Food Feed 2(2):83–90. https://doi.org/10.3920/jiff2015.0071

    Article  Google Scholar 

  • Meeker DL, Hamilton CR (2006) An overview of the rendering industry. In: Meeker DL (ed) Essential rendering. The National Renderers Association, Alexandria, pp 1–16

    Google Scholar 

  • Ming J, Ye J, Zhang Y, Yang X, Wu C, Shao X, Liu P (2013) The influence of maggot meal and l-carnitine on growth, immunity, antioxidant indices and disease resistance of black carp (Mylopharyngodon piceus). J Chin Cereals Oils Assoc 28:80–86

    Google Scholar 

  • Moutinho S, Martínez-Llorens S, Tomás-Vidal A, Jover-Cerdá M, Oliva-Teles A, Peres H (2017) Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquacult 468:271–277. https://doi.org/10.1016/j.aquaculture.2016.10.024

    Article  CAS  Google Scholar 

  • NRC (1993) Nutrient requirement of fish. National Research Council (NRC), The National Academies Press, Washington, DC. https://doi.org/10.17226/2115

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106(36):15103–15110. https://doi.org/10.1073/pnas.0905235106

    Article  CAS  Google Scholar 

  • Nengas I, Alexis MN, Davies SJ (1999) High inclusion levels of poultry meals and related by products in diets for gilthead seabream Sparus aurata L. Aquacult 179(1–4):13–23. https://doi.org/10.1016/s0044-8486(99)00148-9

    Article  Google Scholar 

  • Newton GL, Sheppard DC, Watson DW, Burtle GJ, Dove R (2005) Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Report for M. Williams, Director of the Animal and Poultry Waste Management Center, North Carolina State University,Raleigh, NC—Agreements between the Nc Attorney General, Smithfield Foods, and Premium Standard Farms, and Frontline Farmers. Available http://www.organicvaluerecovery.com/studies/studies_htm_files/bsf_value_added.pdf. Accessed 29 Dec 2017

  • Ng WK, Liew FL, Ang LP, Wong KW (2001) Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquacult Res 32:273–280. https://doi.org/10.1046/j.1355-557x.2001.00024.x

    Article  Google Scholar 

  • Ogunji JO, SummanToor RUA, Schulz C, Kloas W (2008a) Growth performance, nutrient utilization of Nile tilapia Oreochromis niloticus fed housefly maggot meal (magmeal) diets. Turk J Fish Aquat Sci 8:141–147

    Google Scholar 

  • Ogunji JO, Kloas W, Wirth M, Neumann N, Pietsch C (2008b) Effect of housefly maggot meal (magmeal) diets on the performance, concentration of plasma glucose, cortisol and blood characteristics of Oreochromis niloticus fingerlings. J Anim Physiol Anim Nutr 92(4):511–518. https://doi.org/10.1111/j.1439-0396.2007.00745.x

    Article  CAS  Google Scholar 

  • Olele NF (2011) Comparative study on the use of natural and artificial based feeds for the culture of Clarias gariepinus fingerlings. J Agricult Biolog Sci 6(1):9–13

    Google Scholar 

  • Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In: Davis DA (ed) Feed and feeding practice in aquaculture. Woodhead Publishing, Cambridge, pp 203–233

    Chapter  Google Scholar 

  • Parés-Sierra G, Durazo E, Ponce MA, Badillo D, Correa-Reyes G, Viana MT (2014) Partial to total replacement of fishmeal by poultry by-product meal in diets for juvenile rainbow trout (Oncorhynchus mykiss) and their effect on fatty acids from muscle tissue and the time required to retrieve the effect. Aquacult Res 45(9):1459–1469. https://doi.org/10.1111/are.12092

    Article  CAS  Google Scholar 

  • Pfeffer E, Kinsinger S, Rodehutscord M (1995) Influence of the proportion of poultry slaughter by-product and of untreated or hydrothermally treated legume seeds in diets for rainbow trout, Oncorhynchus mykiss Walbaum, on apparent digestibilities of their energy and organic compounds. Aquacult Nutr 1(2):111–117. https://doi.org/10.1111/j.1365-2095.1995.tb00026.x

    Article  Google Scholar 

  • Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G (2017) Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 226:12–20. https://doi.org/10.1016/j.anifeedsci.2017.02.007

    Article  Google Scholar 

  • Pinotti L, Krogdahl A, Givens I, Knight C, Baldi A, Baeten V, Van Raamsdonk L, Woodgate S, Perez Marin D, Luten J (2014) The role of animal nutrition in designing optimal foods of animal origin as reviewed by the COST Action Feed for Health (FA0802). Biotechnol Agron Soc Environ 18(4):471–479

    Google Scholar 

  • Rawles DD, Riche M, Gaylord TG, Webb J, Freeman DW, Davis M (2006) Evaluation of poultry by-product meal in commercial diets for hybrid stripes bass (Morone chrysops female x M. saxatilis male) in recirculating tank production. Aquacult 259, 1–4:377–389. https://doi.org/10.1016/j.aquaculture.2006.05.053

  • Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E, De Marco M, Brugiapaglia A, Zoccarato I, Gasco L (2017) Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J Animal Sci Biotechnol 8:57. https://doi.org/10.1186/s40104-017-0191-3

    Article  CAS  Google Scholar 

  • Riche M (2015) Nitrogen utilization from diets with refined and blended poultry byproducts as partial fish meal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquacult 435:458–466. https://doi.org/10.1016/j.aquaculture.2014.10.001

    Article  CAS  Google Scholar 

  • Roncarati A, Gasco L, Parisi G, Terova G (2015) Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J Insects Food Feed 1(3):233–240. https://doi.org/10.3920/jiff2014.0006

  • Rossi W Jr, Davis DA (2012) Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquacult 338–341:160–166. https://doi.org/10.1016/j.aquaculture.2012.01.026

    Article  CAS  Google Scholar 

  • Rust MB (2002) Nutritional physiology. In: Halver JE, Hardy RW (eds) Fish Nutrition. The Academic Press, New York, pp 368–446

    Google Scholar 

  • Salze GP, Davis DA (2015) Taurine: a critical nutrient for future fish feeds. Aquacult 437:215–229. https://doi.org/10.1016/j.aquaculture.2014.12.006

    Article  CAS  Google Scholar 

  • Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27. https://doi.org/10.1016/j.jclepro.2013.11.068

    Article  CAS  Google Scholar 

  • Sánchez-Muros MJ, deHaro C, Sanz A, Trenzado CE, Villareces S, Barroso FG (2015) Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquacult Nutr 22(5):943–955. https://doi.org/10.1111/anu.12313

    Article  CAS  Google Scholar 

  • Schiavone A, Cullere M, De Marco M, Meneguz, M, Biasato I, Bergagna S, Gai F, Dabbou S, Gasco L, dalle Zotte AD (2017) Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital J Anim Sci 16, 93–100. https://doi.org/10.1080/1828051x.2016.1249968

  • Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S (2011a) Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquacult Soc 42(1):34–45. https://doi.org/10.1111/j.1749-7345.2010.00441.x

    Article  Google Scholar 

  • Sealey WM, Hardy RW, Barrows FT, Pan Q, Stone DAJ (2011b) Evaluation of 100% fish meal substitution with chicken concentrate, protein poultry by-product blend, and chicken and egg concentrate on growth and disease resistance of juvenile rainbow trout, Oncorhynchus mykiss. J World Aquacult Soc 42(1):46–55. https://doi.org/10.1111/j.1749-7345.2010.00442.x

    Article  Google Scholar 

  • Shapawi R, Wing-Keong N, Saleem M (2007) Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis. Aquacult 273(1):118–126. https://doi.org/10.1016/j.aquaculture.2007.09.014

    Article  CAS  Google Scholar 

  • Siemianowska E, Kosewska A, Aljewicz M, Skibniewska KA, Polak-Juszczak L, Jarocki A, Jędras M (2013) Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricult Sci 4(6):287–291. https://doi.org/10.4236/as.2013.46041

  • Sogbesan O, Ajuonu N, Musa BO, Adewole AM (2006) Harvesting techniques and evaluation of maggot meal as animal dietary protein source for Heteroclarias in outdoor concrete tanks. World J Agric Sci 2(4):394–402

    Google Scholar 

  • Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, De Smet S (2016) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agric 97(8):2594–2600. https://doi.org/10.1002/jsfa.8081

    Article  CAS  Google Scholar 

  • Srour TM, Essa MA, Abdel-Rahim MM, Mansour MA (2016) Replacement of fish meal with poultry by-product meal (PBM) and its effects on the survival, growth, feed utilization, and microbial load of European seabass, Dicentrarchus labrax fry. Global Adv Res J Agricult Sci 5(7):293–301

    Google Scholar 

  • Steffens W (1994) Replacing fish meal with poultry by-product meal in diets for rainbow trout Oncorhynchus mykiss. Aquacult 124(1–4):27–34. https://doi.org/10.1016/0044-8486(94)90351-4

    Article  Google Scholar 

  • St-Hilaire S, Cranfill K, McGuire MA, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S (2007a) Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J World Aquacult Soc 38(2):309–313. https://doi.org/10.1111/j.1749-7345.2007.00101.x

    Article  Google Scholar 

  • St-Hilaire S, Sheppard C, Tomberlin JK, Irving S, Newton L, Mc Guire MA, Mosley EE, Hardy RW, Sealey W (2007b) Fly prepupae as a feedstuff for rainbow trout Oncorhynchus mykiss. J World Aquacult Soc 38(1):59–67. https://doi.org/10.1111/j.1749-7345.2006.00073.x

    Article  Google Scholar 

  • Subhadra B, Lochmann R, Rawles S, Chen R (2006) Effect of fish-meal replacement with poultry by-product meal on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides) fed diets containing different lipids. Aquacult 260(1–4):221–231. https://doi.org/10.1016/j.aquaculture.2006.06.029

    Article  CAS  Google Scholar 

  • Sugiura SH, Dong FM, Rathbone CK, Hardy RW (1998) Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquacult 159(3–4):177–202. https://doi.org/10.1016/s0044-8486(97)00177-4

    Article  CAS  Google Scholar 

  • Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK (2016) Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energ 98:197–202. https://doi.org/10.1016/j.renene.2016.03.022

    Article  CAS  Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquacult 285(1–4):146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

    Article  CAS  Google Scholar 

  • Tschirner M, Simon A (2015) Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J Insects Food Feed 1(4):249–259. https://doi.org/10.3920/jiff2014.0008

    Article  Google Scholar 

  • Turchini G, Moretti VM, Mentasti T, Orban E, Valfré F (2007) Effects of dietary lipid source on fillet chemical composition, flavour volatile compounds and sensory characteristics in the freshwater fish tench (Tinca tinca L.). Food Chem 102(4):1144–1155. https://doi.org/10.1016/j.foodchem.2006.07.003

    Article  CAS  Google Scholar 

  • Turker A, Murat Y, Sebahattin E, Burcu K, Erteken A (2005) Potential of poultry by-product meal as a substitute for fish meal in diets for balck seabass turbot Scophthalmus maeoticus: growth and nutrient utilization in winter. Isr J Aquacult Bamidgeh 57(1):49–61

    Google Scholar 

  • Vidanarachchi JK, Kurukulasuriya MS, Kim SK (2010) Chitin, Chitosan and their Oligosaccharides in Food Industry. In: Kim SK (ed) Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. CRC Press, New York, pp 543–560

    Chapter  Google Scholar 

  • Wang Y, Guo J, Bureau DP, Zheng HC (2006) Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibeami ichthioides). Aquacult 252(2–4):476–483. https://doi.org/10.1016/j.aquaculture.2005.07.018

    Article  Google Scholar 

  • Wang Y, Li K, Han H, Zheng ZX (2008) Potential using a blend of renderers animal protein ingredients to replace fish meal in practical diets for Malabar grouper (Epinephelus malabricus). Aquacult 281(1–4):113–117. https://doi.org/10.1016/j.aquaculture.2008.03.033

    Article  CAS  Google Scholar 

  • Wang Y, Ma XZ, Wang F, Wu YB, Qin JG, Li P (2016) Supplementations of poultry by-product meal and selenium yeast increase fish meal replacement by soybean meal in golden pompano (Trachinotus ovatus) diet. Aquacult Res 48(4):1904–1914. https://doi.org/10.1111/are.13028

    Article  CAS  Google Scholar 

  • Webster CD, Thompson KR, Morgan AM, Grisby EJ, Gannam AL (2000) Use of hempseed meal, poultry byproduct meal and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops x M. saxatilis). Aquacult 188(3–4):299–309. https://doi.org/10.1016/s0044-8486(00)00338-0

  • Yang Y, Xie S, Cui Y, Zhu X, LeiW Yang Y (2006) Partial and total replacement of fish meal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquacult Res 37(1):40–48. https://doi.org/10.1111/j.1365-2109.2005.01391.x

    Article  CAS  Google Scholar 

  • Yang Y, Xie SQ, CuiYB ZhuXM, Yang YX, Yu Y (2004) Effect of replacement of fish meal by meat and bone meal, and poultry by-product meal in diets on the growth and feed utilization of gibel carp, Carassius auratus gibelio. Aquacult Nutr 10:289–294

    Article  CAS  Google Scholar 

  • Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822. https://doi.org/10.1007/s00253-014-5792-6

    Article  CAS  Google Scholar 

  • Yigit M, Erdem M, Koshio S, Ergun S, Turker A, Karaali B (2006) Substituting fish meal with poultry by-product meal in diets for black Sea turbot Psetta maeotica. Aquacult Nutr 12(5):340–347. https://doi.org/10.1111/j.1365-2095.2006.00409.x

    Article  CAS  Google Scholar 

  • Yones AMM, Metwalli AA (2015) Effects of fish meal substitution with poultry by-product meal on growth performance, nutrients utilization and blood contents of juvenile Nile Tilapia (Oreochromis niloticus). J Aquacult Res Development 7:389. https://doi.org/10.4172/2155-9546.1000389

    Google Scholar 

  • Zhou QC, Zhao J, Li P, Wang HL, Wang LG (2011) Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquacult 322–323:122–127. https://doi.org/10.1016/j.aquaculture.2011.09.042

    Article  Google Scholar 

  • Zuidhof MJ, Molnar CL, Morley FM, Wray TL, Robinson FE, Khan BA, Al-Ani L, Goonewardene LA (2003) Nutritive value of house fly (Musca domestica) larvae as a feed supplement for turkey poults. Anim Feed Sci Technol 105(1–4):225–230. https://doi.org/10.1016/s0377-8401(03)00004-x

    Article  Google Scholar 

  • Żyłowska M, Wyszyńska A, Jagusztyn-Krynicka EK (2011) Defensins—peptides with antimicrobial activity. Post Mikrobiol 50(3):223–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Gasco .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gasco, L. et al. (2018). Fishmeal Alternative Protein Sources for Aquaculture Feeds. In: Feeds for the Aquaculture Sector. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-77941-6_1

Download citation

Publish with us

Policies and ethics