Skip to main content

Vertical Mass Transport by Weakly Nonlinear Inertia-Gravity Internal Waves

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

In the Boussinesq approximation, free inertia-gravity internal waves are considered in a two-dimensional vertically non-uniform flow. In the linear approximation was find vertical distribution of the amplitude of the vertical velocity and the dispersion relation. The boundary-value problem for internal waves has complex coefficients when the flow velocity component, transverse to the wave propagation direction depends on the vertical coordinate. Therefore, the eigenfunction and frequency of the wave are complex (it is shown that there is a weak damping of the wave). Vertical wave mass fluxes are nonzero. The vertical component of the Stokes drift velocity also differs from zero and contributes to the wave transport. A non-oscillating on a time scale of the wave correction to the average density, which is interpreted as an irreversible vertical fine structure generated by a wave, is determined on the second order of amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Blond, P.H., Mysak, L.: Waves in the Ocean. Elsevier, Amsterdam (1977); Part 2, 363 p. Mir, Moscow (1981)

    Google Scholar 

  2. Le Blond, P.H.: On damping of internal gravity waves in a continuously stratified ocean. J. Fluid Mech. 25(1), 121–142 (1966). https://doi.org/10.1017/S0022112066000089

    Article  ADS  MathSciNet  Google Scholar 

  3. Ostrovskii, L.A., Soustova, I.A.: The upper mixing layer as a sink of internal wave energy. Okeanologiya 19(6), 973–981 (1979)

    Google Scholar 

  4. Borisenko, Y.D., Voronovich, A.G., Leonov, A.I., Miropolsky, Y.Z.: On the theory of nonstationary weak-nonlinear internal waves in a stratified fluid. Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 12(3), 293–301 (1976)

    Google Scholar 

  5. Voronovich, A.G., Leonov, A.I., Miropolsky, Y.Z.: On the theory of the formation of a fine structure of hydrophysical fields in the ocean. Okeanologiya 11(5), 490–497 (1976)

    Google Scholar 

  6. Slepyshev, A.A.: Transport processes induced by weakly nonlinear internal waves in the presence of turbulence. Izv. Atmos. Ocean. Phys. 33(4), 536–548 (1997)

    Google Scholar 

  7. Nosova, A.V., Slepyshev, A.A.: Vertical flows induced weakly nonlinear internal waves on the shelf. Fluid Dyn. 50(1), 12–21 (2015). https://doi.org/10.1134/S0015462815010020

    Article  MathSciNet  MATH  Google Scholar 

  8. Miropolsky, Y.Z.: Dynamics of Internal Gravitational Waves in the Ocean, p. 30. Gidrometeoizdat, Leningrad (1981)

    Google Scholar 

  9. Banks, W.H., Drazin, P.G., Zaturska, M.B.: On the normal modes of parallel flow of inviscid stratified fluid. J. Fluid Mech. 75(1), 149–171 (1976). https://doi.org/10.1017/S0022112076000153

    Article  ADS  MATH  Google Scholar 

  10. Booker, J.B., Brethertone, F.P.: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27(4), 513–539 (1967). https://doi.org/10.1017/S0022112067000515

    Article  ADS  MATH  Google Scholar 

  11. Jones, W.L.: Propagation of internal waves in fluids with shear flow and rotation. J. Fluid Mech. 30(3), 439–448 (1967). https://doi.org/10.1017/S0022112067001521

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Kamke, E.: Differentialgleichungen. Lsungsmethoden und Lsungen, p. 244. Akademische Verlagsgesellschaft, Leipzig (1959)

    Google Scholar 

  13. Longuet-Higgins, M.S.: On the transport of mass by time varying ocean current. Deep-Sea Res. 16(5), 431–447 (1969)

    Google Scholar 

  14. Report on the work on the 44th voyage (3rd stage) of the NIS Mikhail Lomonosov August 7–September 15, 1985. MHI Academy of Sciences of the Ukrainian SSR, Sevastopol, vol. 1, p. 135 (1985)

    Google Scholar 

  15. Ivanov, V.A., Samodurov, A.S., Chukharev, A.M., Nosova, A.V.: Intensification of vertical turbulent exchange in areas of pairing of the shelf and the continental slope in the Black Sea. Dop. Nats. Akad. Nauk Ukr. 6, 108–112 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Slepyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slepyshev, A.A., Vorotnikov, D.I. (2018). Vertical Mass Transport by Weakly Nonlinear Inertia-Gravity Internal Waves. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_12

Download citation

Publish with us

Policies and ethics