Skip to main content

Colony Function and Communication

  • Chapter
  • First Online:
Stingless Bees of Mexico

Abstract

Workers of M. beecheii performing different activities in the brood area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of the sugar concentration and nectar source distance. Apidologie 33:375–388

    Article  CAS  Google Scholar 

  • Aguilar I, Sommeijer M (2001) The deposition of anal excretions by Melipona favosa foragers (Apidae: Meliponinae): behavioural observations concerning the location of food sources. Apidologie 32:37–48

    Article  Google Scholar 

  • Aparecido-Pereira R, Morais MM, Gioli LD, Santos NF, Rossi MA, Bego LR (2006) Comparative morphology of reproductive and trophic eggs in Melipona bees (Apidae, Meliponini). Braz J Morphol Sci 23:349–354

    Google Scholar 

  • Avila B, Moo-Valle H, Valladares P, Camposeco F, Quezada-Euán JJG (2005) Descripción del proceso de aprovisionamiento y oviposición en colonias de Melipona beecheii (Apidae: Meliponini). Reporte de investigación, opción apicultura. FMVZ-Universidad Autónoma de Yucatán, Maestría en Producción Animal Tropical

    Google Scholar 

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Bian Z, Fales HM, Blum MS, Jones TH, Rinderer TE, Howard DF (1984) Chemistry of cephalic secretion of fire bee Trigona (Oxytrigona) tataira. J Chem Ecol 10:451–461

    Article  PubMed  CAS  Google Scholar 

  • Biesmeijer JC (1997) The organisation of foraging in stingless bees of the genus Melipona; an individual approach. Ph.D. thesis, Utrecht University, Utrecht, 263 pp

    Google Scholar 

  • Biesmeijer JC, Toth E (1998) Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae). Insect Soc 45:427–443

    Article  Google Scholar 

  • Bigio G, Schürch R, Ratnieks FLW (2013) Hygienic behaviour in honey bees (Hymenoptera: Apidae): effects of brood, food, and time of the year. J Econ Entomol 106:2280–2285

    Article  PubMed  Google Scholar 

  • Billen J, Morgan ED (1998) Pheromone communication in social insects: sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 3–33

    Google Scholar 

  • Blum MS, Crewe RM, Kerr WE, Keith LH, Garrison AW, Walker MM (1970) Citral in stingless bees: isolation and functions in trail laying and robbing. J Insect Physiol 16:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Borges AA, Ferreira-Caliman MJ, Nascimento FS, Campos LAO, Tavares MG (2012) Characterization of cuticular hydrocarbons of diploid and haploid males, workers and queens of the stingless bee Melipona quadrifasciata. Insect Soc 59:479–486

    Article  Google Scholar 

  • Boogert NJ, Hofstede FE, Aguilar Monge I (2006) The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity. Apidologie 37:366–375

    Article  Google Scholar 

  • Breed MD, Butler L, Stiller TM (1985) Kin discrimination by worker honey bees in genetically mixed groups. Proc Natl Acad Sci USA 82:3058–3061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breed MD, Stocker EM, Baumgartner LK, Vargas E (2002) Time-place learning and the ecology of recruitment in a stingless bee, Tr. amalthea (Hymenoptera, Apidae). Apidologie 33:251–258

    Article  Google Scholar 

  • Breed MD, Cook C, Krasnec MO (2012) Cleptobiosis in social insects. Psyche. Article ID 484765

    Google Scholar 

  • Buchwald R, Breed MD (2005) Nestmate recognition cues in the stingless bee Trigona fulviventris. Anim Behav 70:1331–1337

    Article  Google Scholar 

  • Camargo JMF, Garcia MVB, Junior ERQ, Castrillon A (1992) Notas previas sobre a bionomia de Ptilotrigona lurida (Hymenoptera, Apidae, Meliponinae): associação de leveduras em pólen estocado. Boletim do Museu Paraense Emílio Goeldi 8:391–395

    Google Scholar 

  • Camargo JMF, Pedro SRM (2007) Meliponini Lepeletier, 1836. In: Moure JS (ed) Catalogue of the bees (Hymenoptera, Apoidea) in the Neotropical region. Sociedade Brasileira de Entomologia, Curitiba, pp 272–578

    Google Scholar 

  • Cardoso-Júnior CAM, Pereira Silva R, Araújo Borges N, de Carvalho WJ, Walter SL, Paulino Simões ZL, Bitondi MMG, Ueira Vieira C, Bonetti AM, Hartfelder K (2017a) Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. J Insect Physiol 101:185–194

    Article  PubMed  CAS  Google Scholar 

  • Cardoso-Júnior CAM, Fujimura PT, Santos-Júnior CD, Borges NA, Ueira-Vieira C, Hartfelder K, Goulart LR, Bonetti AM (2017b) Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris. Genet Mol Biol 40(1):61–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chittka L, Thomson JD (2001) Cognitive ecology of pollination, animal behavior and floral evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Choo YM, Lee KS, Yoon HJ, Kim BY, Sohn MR et al (2010) Dual strategy of bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One 5:e10393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couvillon MJ, Ratnieks FLW (2008) Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an ‘undesirable-absent’ recognition system. Behav Ecol Sociobiol 62:1099–1105

    Article  Google Scholar 

  • Crespi BJ (1992) Cannibalism and trophic eggs in subsocial and eusocial insects. In: Elgar MA, Crespi BJ (eds) Cannibalism, ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 176–213

    Google Scholar 

  • Cruz-Landim C (2000) Ovarian development in Meliponine bees (Hymenoptera: Apidae): the effect of queen presence and food on worker ovary development and egg production. Genet Mol Biol 23:83–88

    Article  Google Scholar 

  • Cruz-Landim C, Ferreira-Caliman MJ, Gracioli-Vitti LF, Zucchi R (2012) Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata. Genet Mol Res 11:966–977

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Lopez L, Malo EA, Morgan ED, Rincon M, Guzman M, Rojas JC (2005) Mandibular gland secretion of Melipona beecheii: chemistry and behavior. J Chem Ecol 31:1621–1632

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Lopez L, Aguilar S, Malo EA, Rincon M, Guzman M, Rojas JC (2007) Electroantennogram and behavioral responses of workers of the stingless bee Oxytrigona mediorufa to mandibular gland volatiles. Entomol Exp Appl 123:43–47

    Article  CAS  Google Scholar 

  • Dade HA (1985) Anatomy and dissection of the honeybee. International Bee Research Association, London

    Google Scholar 

  • Daneels EL, Van Vaerenberg M, Debyser G, Devreese B, Graaf DC d (2015) Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins 7:4468–4483

    Article  CAS  Google Scholar 

  • Díaz S, de Souza Urbano S, Caesar L, Blochtein B, Sattler A, Zuge V, Haag KL (2017) Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J Invertebr Pathol 143:35–39

    Article  PubMed  Google Scholar 

  • dos Santos CG, Blochtein B, Megiolaro FL, Imperatriz-Fonseca VL (2010) Age Polyethism in Plebeia emerina (Friese) (Hymenoptera: Apidae) colonies related to propolis handling. Neotrop Entomol 39:691–696

    Article  PubMed  Google Scholar 

  • dos Santos CF, Ferreira-Caliman MJ, Nascimento FS (2015) An alien in the group: eusocial male bees sharing nonspecific reproductive aggregations. J Insect Sci 15:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drumond PM, Zucchi R, Oldroyd BP (2000) Description of the cell provisioning and oviposition process of seven species of Plebeia Schwarz (Apidae, Meliponini), with notes on their phylogeny and taxonomy. Insect Soc 47:99–112

    Article  Google Scholar 

  • Eardley CD (2004) Taxonomic revision of the African stingless bees (Apoidea: Apidae: Apinae: Meliponini). Afr Plant Protect 10:63–96

    Google Scholar 

  • Engels W (1987) Pheromones and reproduction in Brazilian stingless bees. Memorias Instituto Oswaldo Cruz, Rio de Janeiro 82(Suppl III):35–45

    Article  Google Scholar 

  • Engels E, Engels W, Schroder W, Francke W (1987) Intranidal worker reactions to volatile compounds identified from cephalic secretions in the stingless bee, Scaptotrigona postica (Hymenoptera, Meliponinae). J Chem Ecol 13:371–386

    Article  PubMed  CAS  Google Scholar 

  • Engels W, Engels E, Lübke G, Schröder W, Francke W (1990) Volatile cephalic secretions of drones, queens and workers in relation to reproduction in the stingless bee, Scaptotrigona postica. Entomologia Generalis 15:91–101

    Article  Google Scholar 

  • Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M et al (2006) Immune pathways and defence mechanisms in honeybees Apis mellifera. Insect Mol Biol 15:645–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fierro MM, Cruz-López L, Sánchez D, Villanueva-Gutiérrez R, Vandame R (2011) Queen volatiles as a modulator of Tetragonisca angustula drone behavior. J Chem Ecol 37:1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Flach A, Marsaioli AJ, Singer RB, Amaral M d CE, Menezes C, Kerr WE, Batista-Pereira LG, Correa AG (2006) Pollination by sexual mimicry in Mormolyca ringens: a floral chemistry that remarkably matches the pheromones of virgin queens of Scaptotrigona sp. J Chem Ecol 32:59–70

    Article  PubMed  CAS  Google Scholar 

  • Flaig IC, Aguilar I, Schmitt T, Jarau S (2016) An unusual recruitment strategy in a mass-recruiting stingless bee, Partamona orizabaensis. J Comp Physiol A 202:679–690

    Article  Google Scholar 

  • Francke W, Schroder W, Engels E, Engels W (1983) Variation in cephalic volatile substances in relation to worker age and behavior in the stingless bee, Scaptotrigona postica. Z Naturforsch 38c:1066–1068

    Article  CAS  Google Scholar 

  • Free JB (1987) Pheromones of social bees. Cornell University Press, Ithaca

    Google Scholar 

  • Gibbs A (1995) Physical properties of insect curticular hydrocarbons: model mixtures and lipid interactions. Comp Biochem Physiol 112B:667–672

    Article  CAS  Google Scholar 

  • Gibbs A, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comp Biochem Physiol 112B:243–249

    Article  CAS  Google Scholar 

  • Gloag R, Heard T, Beekman M, Oldroyd B (2008) Nest defence in a stingless bee: what causes fighting swarms in Trigona carbonaria (Hymenoptera, Meliponini)? Insect Soc 55:387–391

    Article  Google Scholar 

  • Gordon DM (2016) From division of labor to the collective behavior of social insects. Behav Ecol Sociobiol 70:1101–1108

    Article  PubMed  Google Scholar 

  • Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14:669–678

    Article  Google Scholar 

  • Greco MK, Hoffmann D, Dollin A, Duncan M, Spooner-Hart R, Neumann P (2010) The alternative pharaoh approach: stingless bees mummify beetle parasites alive. Naturwissenschaften 97:319–323

    Article  PubMed  CAS  Google Scholar 

  • Grüter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FLW (2012) A morphologically specialized soldier caste improves colony defence in a Neotropical eusocial bee. Proc Natl Acad Sci USA 109:1182–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Grüter C, Keller L (2016) Inter-caste communication in social insects. Curr Opin Neurobiol 38:6–11

    Article  PubMed  CAS  Google Scholar 

  • Grüter C, von Zuben LG, Segers FHID, Cunningham JP (2016) Warfare in stingless bees. Insect Soc 63:223–236

    Article  Google Scholar 

  • Grüter C, Segers FHID, Menezes C, Vollet-Neto A, Falcón T, von Zuben L, Bitondi MMG, Nascimento FS, Almeida EAB (2017) Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nat Commun 8:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez E, Ruiz D, Solís T, May-Itzá W d J, Moo-Valle H, Quezada Euán JJG (2016) Does larval food affect cuticular profiles and recognition in eusocial bees? A test on Scaptotrigona gynes (Hymenoptera: Meliponini). Behav Ecol Sociobiol 70:781–789

    Article  Google Scholar 

  • Hart AG, Ratnieks FLW (2001) Why do honey-bee (Apis mellifera) foragers transfer nectar to several receivers? Information improvement through multiple sampling in a biological system. Behav Ecol Sociobiol 49:244–250

    Article  Google Scholar 

  • Hart AG, Ratnieks FLW (2002) Task partitioned nectar transfer in stingless bees (Meliponini): work organisation in a phylogenetic context. Ecol Entomol 27:163–168

    Article  Google Scholar 

  • Hartfelder K, Bitondi MMG, Santana WC, Simões ZLP (2002) Ecdysteroid titers and reproduction in queens and workers of the honey bee and of a stingless bee: loss of ecdysteroid function at increasing levels of sociality? J Insect Physiol 32:211–216

    CAS  Google Scholar 

  • Hartfelder K, Makert GR, Judice CC, Pereira GAG, Santana WC, Dallacqua R, Bitondi MMG (2006) Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie 37:144–163

    Article  CAS  Google Scholar 

  • Hermann HR (1984) Defensive mechanisms: general considerations. In: Hermann HR (ed) Defensive mechanisms in social insects. Praeger, New York, pp 1–31

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93–113

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol 189:761–768

    Article  CAS  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004a) On the origin and properties of scent marks deposited at the food source by a stingless bee, Melipona seminigra. Apidologie 35:3–13

    Article  Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2004b) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190:549–560

    CAS  Google Scholar 

  • Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006) Vibrating the food receivers: a direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887

    Article  Google Scholar 

  • Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC, Boca Raton, pp 223–250

    Chapter  Google Scholar 

  • Jarau S, Hrncir M, Ayasse M, Schulz C, Francke W, Zucchi R, Barth FG (2004) A stingless bee (Melipona seminigra) marks food sources with a pheromone from its claw retractor tendons. J Chem Ecol 30:793–804

    Article  PubMed  CAS  Google Scholar 

  • Jarau S, Schulz CM, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa. J Chem Ecol 32:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Johnson LK, Haynes LW, Carlson MA, Fortnum HA, Gorgas DL (1985) Alarm substances of the stingless bee, Trigona silvestriana. J Chem Ecol 11:409–416

    Article  PubMed  CAS  Google Scholar 

  • Jones SM, van Zweden JS, Grüter C, Menezes C, Alves DA, Nunes-Silva P, Czaczkes T, Imperatriz-Fonseca VL, Ratnieks FLW (2012) The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav Ecol Sociobiol 66:1–12

    Article  Google Scholar 

  • Jungnickel H, Velthuis HHW, Imperatriz-Fonseca VL, Morgan ED (2001) Chemical properties allow stingless bees to place their eggs upright on liquid larval food. Physiol Entomol 26:300–305

    Article  CAS  Google Scholar 

  • Jungnickel H, da Costa AJS, Tentschert J, Flávia E, Patricio LRA, Imperatriz-Fonseca VL, Drijfhout F, Morgan ED (2004) Chemical basis for inter-colonial aggression in the stingless bee Scaptotrigona bipunctata (Hymenoptera: Apidae). J Insect Physiol 50:761–766

    Article  PubMed  CAS  Google Scholar 

  • Keeping MG, Crewe RM, Field BI (1982) Mandibular secretions of the old world stingless bee, Trigona gribodoi Magrettii: isolation, identification, and compositional changes with age. J Apic Res 21:65–73

    Article  CAS  Google Scholar 

  • Kerr WE, Lello E (1962) Sting glands in stingless bees—a vestigial character. J NY Entomol Soc 70:190–214

    Google Scholar 

  • Kerr WE, Rocha R (1988) Communicação em Melipona rufiventris e Melipona compressipes. Ciência e Cultura 40:1200–1202

    Google Scholar 

  • Kirchner WH, Lindauer M (1994) The causes of the tremble dance. Behav Ecol Sociobiol 35:303–308

    Article  Google Scholar 

  • Koedam D, Velthausz PH, van de Krift T, Dohmen MR, Sommeijer MJ (1996) Morphology of reproductive and trophic eggs and their controlled release by workers in Trigona (Tetragonisca) angustula Illiger (Apidae, Meliponinae). Physiol Entomol 21:289–296

    Article  Google Scholar 

  • Koethe S, Bossems J, Dyer AG, Lunau K (2016) Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata. J Comp Physiol A 202:615–627

    Article  Google Scholar 

  • Kolmes SA (1985) An information-theory analysis of task specialization among worker honey bees performing hive duties. Anim Behav 33:181–187

    Article  Google Scholar 

  • Kwong WK, Medina LA, Koch H, Sing KW, Yu Soh EJ, Ascher JS, Jaffé R, Moran NA (2017) Dynamic microbiome evolution in social bees. Sci Adv 3:e1600513

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapidge K, Oldroyd B, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honeybees. Naturwissenschaften 89:565–568

    PubMed  CAS  Google Scholar 

  • Lenoir A, D’Ettorre P, Errard C (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt SD, Blüthgen N (2009) A sticky affair: resin collection by Bornean stingless bees. Biotropica 41:730–736

    Article  Google Scholar 

  • Leonhardt SD, Kaltenpoth M (2014) Microbial communities of three sympatric Australian stingless bee species. PLoS One 9:e105718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leonhardt SD, Jung LM, Schmitt T, Blüthgen N (2010a) Terpenoids tame aggressors: role of chemicals in stingless bee communal nesting. Behav Ecol Sociobiol 64:1415–1423

    Article  Google Scholar 

  • Leonhardt SD, Zeilhofer S, Schmitt T (2010b) Stingless bees use terpenes as olfactory cues to find resin sources. Chem Senses 35:603–611

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt SD, Wallace HM, Blüthgen N, Wenzel F (2015) Potential role of environmentally derived cuticular compounds in stingless bees. Chemoecology 25:159–167

    Article  CAS  Google Scholar 

  • Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two competing stingless bee species. Behav Ecol Sociobiol 65:763–774

    Article  PubMed  Google Scholar 

  • Lindauer M, Kerr WE (1960) Communication between the workers of stingless bees. Bee World 41:29–41–65–71

    Article  Google Scholar 

  • López-Uribe MM, Sconiers WB, Frank SD, Dunn RR, Tarpy DR (2016) Reduced cellular immune response in social insect lineages. Biol Lett 12:20150984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado JO (1971) Simbiose entre as abelhas sociais brasileiras (Meliponinae, Apidae) e uma espécie de bactéria. Ciência e Cultura 23:625–633

    Google Scholar 

  • Martin SJ, Jenner EA, Drijfhout FP (2007) Chemical deterrent enables a social parasitic ant to invade multiple hosts. Proc R Soc B 274:2717–2721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin SJ, Carruthers JM, Williams PH, Drijfhout FP (2010) Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J Chem Ecol 36:855–863

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Shemilt S, da S Lima CB, de Carvalho CAL (2017) Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp). J Chem Ecol 43:1066–1072

    Google Scholar 

  • McFrederick SQ, Cannone JJ, Gutell RR, Kellner K, Plowes RM, Mueller UG (2013) Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl Environ Microbiol 79:1803–1812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McFrederick SQ, Wcislo WT, Taylor DR, Ishak HD, Dowd SE et al (2012) Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol Notes 21:1754–1768

    Article  Google Scholar 

  • Medina-Medina LA, Hart AG, Ratnieks FLW (2009) Hygienic behavior in the stingless bees Melipona beecheii and Scaptotrigona pectoralis (Hymenoptera: Meliponini). Genet Mol Res 8:571–576

    Article  Google Scholar 

  • Medina-Medina LA, Hart AG, Ratnieks FLW (2014) Waste management in the stingless bee Melipona beecheii Bennett (Hymenoptera: Apidae). Sociobiology 61:428–434

    Article  Google Scholar 

  • Medina RG, Fairbairn DJ, Bustillos A, Moo-Valle H, Medina S, Quezada-Euán JJG (2016) Variable patterns of intraspecific sexual size dimorphism and allometry in three species of eusocial corbiculate bees. Insect Soc 63:493–500

    Article  Google Scholar 

  • Menezes C, Vollet-Neto A, León Contrera FA, Venturieri GC, Imperatriz-Fonseca VL (2013) The role of useful microorganisms to stingless bees and stingless beekeeping. In: Vit P, Pedro SRM, Roubik DW (eds) Pot honey: a legacy of stingless bees. Springer, New York, pp 153–172

    Chapter  Google Scholar 

  • Menezes C, Vollet-Neto A, Marsaioli AJ, Zampieri D, Fontoura IC, Luchessi AD, Imperatriz-Fonseca VL (2015) A Brazilian social bee must cultivate fungus to survive. Curr Biol 25:2851–2855

    Article  PubMed  CAS  Google Scholar 

  • Michener CD (1974) The social behavior of the bees: a comparative study. Belknap Press, Harvard University, Cambridge

    Google Scholar 

  • Morais PB, Calaça PSST, Rosa CA (2013) Microorganisms associated with stingless bees. In: Vit P, Pedro SRM, Roubik DW (eds) Pot honey: a legacy of stingless bees. Springer, New York, pp 173–186

    Chapter  Google Scholar 

  • Nascimento DL, Nascimento FS (2012) Acceptance threshold hypothesis is supported by chemical similarity of cuticular hydrocarbons in a stingless bee, Melipona asilvai. J Chem Ecol 38:1432–1440

    Article  PubMed  CAS  Google Scholar 

  • Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In: D’Ettorre P, Hughes DP (eds) Sociobiology of communication: an interdisciplinary perspective. Oxford University Press, Oxford, pp 55–80

    Chapter  Google Scholar 

  • Nieh JC (1998) The role of a scent beacon in the communication of food location by the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:47–58

    Article  Google Scholar 

  • Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1995) A stingless bee (Melipona panamica) indicates food location without using a scent trail. Behav Ecol Sociobiol 37:63–70

    Article  Google Scholar 

  • Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387–399

    Article  Google Scholar 

  • Nieh JC, Tautz J, Spaethe J, Bartareau T (1999) The communication of food location by a primitive stingless bee, Trigona carbonaria. Zoology 102:238–246

    Google Scholar 

  • Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94

    Article  Google Scholar 

  • Nieh JC, Barreto LS, Contrera FAL, Imperatriz-Fonseca VL (2004) Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes. Proc R Soc Lond B 271:1633–1640

    Article  Google Scholar 

  • Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171

    Article  Google Scholar 

  • Nunes TM, Turatti IC, Lopes NP, Zucchi R (2009a) Chemical signals in the stingless bee, Frieseomelitta varia, indicate caste, gender, age, and reproductive status. J Chem Ecol 35:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • Nunes TM, Turatti IC, Mateus S, Nascimento FS, Lopes NP, Zucchi R (2009b) Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Genet Mol Res 8:589–595

    Article  PubMed  CAS  Google Scholar 

  • Nunes TM, Mateus S, Turatti IC, Morgan E, Zucchi R (2011) Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): sources of chemical signals. Anim Behav 81:463–467

    Article  Google Scholar 

  • Nunes TM, Mateus S, Favaris AP, Amaral MFZJ, von Zuben LG, Clososki GC, Bento JMS, Oldroyd BP, Silva R, Zucchi R, Silva DB, Lopes NP (2014a) Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds. Sci Rep 4:7449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nunes TM, von Zuben LG, Costa L, Venturieri GC (2014b) Defensive repertoire of the stingless bee Melipona flavolineata Friese (Hymenoptera: Apidae). Sociobiology 61:541–546

    Article  Google Scholar 

  • Nunes-Silva PN, Imperatriz-Fonseca VL, Gonçalves LS (2009) Hygienic behavior of the stingless bee Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Genet Mol Res 8:649–654

    Article  PubMed  CAS  Google Scholar 

  • Packer L (2003) Comparative morphology of the skeletal parts of the sting apparatus of bees (Hymenoptera: Apoidea). Zool J Linnean Soc 138:1–38

    Article  Google Scholar 

  • Page RE Jr (2013) The spirit of the hive: the mechanisms of social evolution. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Page RE Jr, Metcalf RA, Erickson EH Jr, Lampman RL (1991) Extractable hydrocarbons and kin recognition in the honey bee (Apis mellifera L.). J Chem Ecol 17:745–756

    Article  PubMed  CAS  Google Scholar 

  • Patricio EFLRA, Cruz-López L, Morgan ED (2002) Electroantennography in the study of two stingless bee species (Hymenoptera: Meliponini). Braz J Biol 64:827–831

    Article  Google Scholar 

  • Perry JC, Roitberg BD (2006) Trophic egg laying: hypotheses and tests. Oikos 112:706–714

    Article  Google Scholar 

  • Pianaro A, Flach A, Patricio EFLRA, Nogueira-Neto P, Marsaioli AJ (2007) Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. J Chem Ecol 33:971–984

    Article  PubMed  CAS  Google Scholar 

  • Pianaro A, Menezes C, Kerr WE, Singer RB, Patricio EFLRA, Marsaioli AJ (2009) Stingless bees: chemical differences and potential functions in Nannotrigona testaceicornis and Plebeia droryana males and workers. J Chem Ecol 35:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Poiani SB, Morgan ED, Drijfhout FP, Cruz-Landim Cd (2014) Separation of Scaptotrigona postica workers into defined task groups by the chemical profile on their epicuticle wax layer. J Chem Ecol 40:331–340

    Article  PubMed  CAS  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  • Quezada-Euán JJG, González-Acereto JA (2002) Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatán peninsula, México. Acta Zool Mex 86:245–249

    Google Scholar 

  • Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect Soc 58:31–38

    Article  Google Scholar 

  • Quezada-Euán JJG, Ramírez J, Eltz T, Pokorny T, Medina R, Monsreal R (2013) Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim Behav 85:817–823

    Article  Google Scholar 

  • Quezada-Euán JJG, May-Itzá WdJ, Montejo E, Moo-Valle H (2015) Isometric worker size variation in relation to individual foraging preference and seasonal colony growth in stingless bees. Insect Soc 62:73–80

    Article  Google Scholar 

  • Raguso RA (2001) Floral scent, olfaction, and scent-driven foraging behavior. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination: animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 83–105

    Chapter  Google Scholar 

  • Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol J Linn Soc 99:206–232

    Article  Google Scholar 

  • Ratnieks FLW, Anderson C (1999) Task partitioning in insect societies. II. Use of queueing delay information in recruitment. Am Nat 154:536–548

    Article  PubMed  Google Scholar 

  • Riveros AJ, Groenenberg W (2010) Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behav Ecol Sociobiol 64:955–966

    Article  Google Scholar 

  • Robinson GE, Huang ZY (1998) Colony integration in honey bees: genetic, endocrine and social control of division of labor. Apidologie 29:159–170

    Article  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roubik DW, Smith BH, Carlson RG (1987) Formic acid in caustic cephalic secretions of stingless bee Oxytrigona (Hymenoptera: Apidae). J Chem Ecol 13:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Rothenbuhler WC (1964) Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. Am Zool 12:578–583

    Google Scholar 

  • Sakagami SF (1982) Stingless bees. In: Hermann HR (ed) Social insects, vol III. Academic Press, London, pp 361–423

    Chapter  Google Scholar 

  • Sakagami SF, Zucchi R (1966) Estudo comparativo do comportamento de varias especies de abelhas sem ferrão, com especial referencia oa processo de aprovisionamento e postura das celulas (Comparative study of various stingless bees behaviour with special provitioning reference process and cell posture). Ciencia e Cultura 18:283–296

    Google Scholar 

  • Sakagami SF, Roubik DW, Zucchi R (1993) Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21:237–277

    Google Scholar 

  • Shackleton K, Toufailia A, Balfour NJ, Nasciento FS, Alves DA, Ratnieks FLW (2015) Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees. Behav Ecol Sociobiol 69:273–281

    Article  PubMed  Google Scholar 

  • Schmidt VM, Hrncir M, Schorkopf DLP, Mateus S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behaviour in the stingless bee Nannotrigona testaceicornis. Apidologie 39:260–272

    Article  Google Scholar 

  • Schorkopf DLP, Jarau S, Francke W, Twele R, Zucchi R, Hrncir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc R Soc B 274:895–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Schorkopf DLP, Hrncir M, Mateus S, Zucchi R, Schmidt VM, Barth FG (2009) Mandibular gland secretions of Meliponine worker bees: further evidence for their role in interspecific and intraspecific defence and aggression and against their role in food source signalling. J Exp Biol 212:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Schorkopf DLP (2016) Male Meliponine bees (Scaptotrigona aff. depilis) produce alarm pheromones to which workers respond with fight and males with flight. J Comp Physiol A 202:667–678

    Article  CAS  Google Scholar 

  • Seeley TD (1985) Honeybee ecology, a study of adaptation in social life. Princeton University Press, Princeton

    Book  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive, the social physiology of honeybee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Seeley TD (1998) Thoughts on information and integration in honey bee colonies. Apidologie 29:67–80

    Article  Google Scholar 

  • Septanil MPB, Mateus S, Turatti IT, Nunes TM (2012) Mixed colonies of two species of congeneric stingless bees (Hymenoptera: Apinae, Meliponini) display environmentally-acquired and endogenously-produced recognition signals. Physiol Entomol 37:72–80

    Article  CAS  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311

    Article  Google Scholar 

  • Smith BH, Roubik DW (1983) Mandibular glands of stingless bees (Hymenoptera: Apidae): chemical analysis of their contents and biological function in two species of Melipona. J Chem Ecol 9:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Sommeijer MJ (1984) Distribution of labour among workers of Melipona favosa F: age polyethism and worker oviposition. Insect Soc 31:171–184

    Article  Google Scholar 

  • Sommeijer MJ (1987) Age-polyethism in stingless bees and evidence of flexible individual ontogenetic sequences. In: Eder J, Rembold H (eds) Chemistry and biology of social insects. Peperny, München, pp 129–130

    Google Scholar 

  • Sommerlandt FMJ, Huber W, Spaethe J (2014) Social information in the stingless bee, Trigona corvina Cockerell (Hymenoptera: Apidae): the use of visual and olfactory cues at the food site. Sociobiology 61:401–406

    Article  Google Scholar 

  • Spivak M, Downey DL (1998) Field assays for hygienic behavior in honey bees (Hymenoptera: Apidae). J Econ Entomol 91:64–70

    Article  Google Scholar 

  • Tofilski A (2002) Influence of age polyethism on longevity of workers in social insects. Behav Ecol Sociobiol 51:234–237

    Article  Google Scholar 

  • Toufailia HA, Alves DA, Bento JMS, Marchini LC, Ratnieks FLW (2016) Hygienic behaviour in Brazilian stingless bees. Biol Open 5:1712–1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK (ed) Pheromone communication in social insects: ants, wasps, bees and termites. Westview Press, Boulder, pp 79–103

    Google Scholar 

  • van Veen JW (2000) Cell provisioning and oviposition in Melipona beecheii (Apidae, Meliponinae), with a note on caste determination. Apidologie 31:411–419

    Article  Google Scholar 

  • van Veen JW, Sommeijer MJ, Meeuwsen F (1997) Behaviour of drones in Melipona (Apidae, Meliponinae). Insect Soc 44:435–447

    Article  Google Scholar 

  • van Zweden JS, D’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge, pp 222–243

    Chapter  Google Scholar 

  • Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7:e33188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velthuis HHW (1997) The biology of stingless bees. Dept. of Ethology, Utrecht University, Utrecht

    Google Scholar 

  • Velthuis HHW, Cortopassi-Laurino M, Pereboom Z, Imperatriz-Fonzeca VL (2003) The conservative egg of the genus Melipona and its consequences for speciation. In: Melo GAR, Alves-dos-Santos I (eds) Apoidea Neotropica: Homenagem aos 90 Anos de Jesus Santiago Moure. Editora UNESC, Criciúma, pp 171–176

    Google Scholar 

  • Velthuis HHW, Koedam D, Imperatriz-Fonseca VL (2005) The males of Melipona and other stingless bees, and their mothers. Apidologie 36:169–185

    Article  Google Scholar 

  • von Zuben LG, Schorkopf DLP, Elias LG, Vaz ALL, Favaris AP, Clososki GC, Bento JMS, Nunes TM (2016) Interspecific chemical communication in raids of the robber bee Lestrimelitta limao. Insect Soc 63:339–347

    Article  Google Scholar 

  • Verdugo-Dardón M, Cruz-López L, Malo EA, Rojas JC, Guzmán-Díaz M (2011) Olfactory attraction of Scaptotrigona mexicana drones to their virgin queen volatiles. Apidologie 42:543–550

    Article  Google Scholar 

  • Villa JD, Weiss MR (1990) Observations on the use of visual and olfactory cues by Trigona spp foragers. Apidologie 21:541–545

    Article  Google Scholar 

  • Waddington KD (1989) Implications of variation in worker body size for the honey bee recruitment system. J Insect Behav 2:91–103

    Article  Google Scholar 

  • Wille A (1979) Phylogeny and relationships among the genera and subgenera of the stingless bees (Meliponinae) of the world. Rev Biol Trop 27:241–277

    Google Scholar 

  • Wille A (1983) Biology of the stingless bees. Annu Rev Entomol 28:41–64

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1990) Success and dominance in ecosystems: the case of the social insects. In: Kinne O (ed) Excellence in ecology. Book 2. Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour. Communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zucchi R (1993) Ritualized dominance, evolution of queen-worker interactions and related aspects in stingless bees. (Hym., Apidae). In: Sakagami SF, Inoue T, Yamane S (eds) Evolution of insect societies. Hakuhinsha, Tokyo, pp 207–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quezada-Euán, J.J.G. (2018). Colony Function and Communication. In: Stingless Bees of Mexico. Springer, Cham. https://doi.org/10.1007/978-3-319-77785-6_5

Download citation

Publish with us

Policies and ethics