Skip to main content

Modeling and Motion Control of the 6-3-PUS-Type Hexapod Parallel Mechanism

  • Chapter
  • First Online:
Advanced Topics on Computer Vision, Control and Robotics in Mechatronics

Abstract

This chapter reports the kinematics and dynamics models of the parallel mechanism known as Hexapod, which has a structure of the type known as 6-3-PUS. For computing the dynamics model, we start considering a non-minimal set of generalized coordinates and employ the Euler–Lagrange formulation; after that, we apply the so-called projection method to get a minimal model. It is worth noticing that the modeling approach presented here can be used for similar robotic structures, and the resulting models are suitable for automatic control applications. The computed analytical kinematics and dynamics models are validated by comparing their results with numerical simulations carried out using the SolidWorks Motion platform. In addition, this chapter describes the implementation of two motion tracking controllers in a real Hexapod robot. The tested controllers are one with a two-loop structure (a kinematic controller in the outer loop and a PI velocity controller in the inner loop) and other with an inverse dynamics structure. The experimental results of both controllers show a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arczewski, K., & Blajer, W. (1996). A unified approach to the modelling of holonomic and nonholonomic mechanical systems. Mathematical Modelling of Systems, 2(3), 157–174.

    Article  MathSciNet  Google Scholar 

  • Betsch, P. (2005). The discrete null space method for the energy consistent integration of constrained mechanical systems: Part I: Holonomic constraints. Computer Methods in Applied Mechanics and Engineering, 194, 5159–5190.

    Article  MathSciNet  Google Scholar 

  • Blajer, W. (1997). A geometric unification of constrained system dynamics. Multibody System Dynamics, 1, 3–21.

    Article  MathSciNet  Google Scholar 

  • Camarillo, K., Campa, R., Santibáñez, V., & Moreno-Valenzuela, J. (2008). Stability analysis of the operational space control for industrial robots using their own joint velocity PI controllers. Robotica, 26(6), 729. https://doi.org/10.1017/S0263574708004335.

    Article  Google Scholar 

  • Campa, R., Bernal, J., & Soto, I. (2016). Kinematic modeling and control of the Hexapod parallel robot. In Proceedings of the 2016 American Control Conference (pp. 1203–1208). IEEE. http://doi.org/10.1109/ACC.2016.7525081.

  • Campa, R., & de la Torre, H. (2009). Pose control of robot manipulators using different orientation representations: A comparative review. In Proceedings of the American Control Conference. St. Louis, MO, USA.

    Google Scholar 

  • Carbonari, L., Krovi, V. N., & Callegari, M. (2011). Polynomial solution to the forward kinematics problem of a 6-PUS parallel-architecture robot (in Italian). In Proceedings of the Congresso dell’Associazione Italiana di Meccanica Teorica e Applicata. Bologna, Italy.

    Google Scholar 

  • Cheah, C. C., & Haghighi, R. (2014). Motion control of robot manipulators. In Handbook of Manufacturing Engineering and Technology (pp. 1–40). London: Springer London. http://doi.org/10.1007/978-1-4471-4976-7_93-1.

    Google Scholar 

  • Craig, J. J. (2004). Introduction to robotics: Mechanics and control. Pearson.

    Google Scholar 

  • Dasgupta, B., & Mruthyunjaya, T. S. (2000). The Stewart platform manipulator: A review. Mechanism and Machine Theory, 35(1), 15–40.

    Article  MathSciNet  Google Scholar 

  • Dontchev, A. L., & Rockafellar, R. T. (2014). Implicit functions and solution mappings: A view from variational analysis. Springer.

    Google Scholar 

  • Geng, Z., Haynes, L. S., Lee, J. D., & Carroll, R. L. (1992). On the dynamic model and kinematic analysis of a class of Stewart platforms. Robotics and Autonomous Systems, 9(4), 237–254.

    Article  Google Scholar 

  • Ghorbel, F. H., Chételat, O., Gunawardana, R., & Longchamp, R. (2000). Modeling and set point control of closed-chain mechanisms: Theory and experiment. IEEE Transactions on Control Systems Technology, 8(5), 801–815.

    Article  Google Scholar 

  • Hopkins, B. R., & Williams, R. L., II. (2002). Kinematics, design and control of the 6-PSU platform. Industrial Robot: An International Journal, 29(5), 443–451.

    Article  Google Scholar 

  • Kapur, D. (1995). Algorithmic elimination methods. In Tutorial Notes of the International Symposium on Symbolic and Algebraic Computation. Montreal, Canada.

    Google Scholar 

  • Kelly, R., Santibáñez, V., & Loría, A. (2005). Control of robot manipulators in joint space. Springer.

    Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal on Robotics and Automation, 3(1), 43–53. https://doi.org/10.1109/JRA.1987.1087068.

    Article  Google Scholar 

  • Liu, C. H., Huang, K. C., & Wang, Y. T. (2012). Forward position analysis of 6-3 Linapod parallel manipulators. Meccanica, 47(5), 1271–1282.

    Article  MathSciNet  Google Scholar 

  • Liu, M. J., Li, C. X., & Li, C. N. (2000). Dynamics analysis of the Gough-Stewart platform manipulator. IEEE Transactions on Robotics and Automation, 16(1), 94–98.

    Article  Google Scholar 

  • Merlet, J.-P. (1999). Parallel robots: Open problems. In Proceedings of the International Symposium of Robotics Research. Snowbird, UT, USA.

    Google Scholar 

  • Merlet, J.-P. (2006). Parallel robots. Springer.

    Google Scholar 

  • Murray, J. J., & Lovell, G. H. (1989). Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control. IEEE Transactions on Robotics and Automation, 5(4), 522–528. https://doi.org/10.1109/70.88066.

    Article  Google Scholar 

  • Nanua, P., Waldron, K. J., & Murthy, V. (1990). Direct kinematic solution of a Stewart platform. IEEE Transactions on Robotics and Automation, 6(4), 438–444.

    Article  Google Scholar 

  • Narayanan, M. S., Chakravarty, S., Shah, H., & Krovi, V. N. (2010). Kinematic, static and workspace analysis of a 6-PUS parallel manipulator. In Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B (pp. 1456–1456.8). Montreal, Canada: ASME. http://doi.org/10.1115/DETC2010-28978.

  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. London: Springer London. https://doi.org/10.1007/978-1-84628-642-1.

    Book  Google Scholar 

  • Tsai, L. W. (1999). Robot analysis: The mechanics of serial and parallel manipulators. Wiley.

    Google Scholar 

  • Whitney, D. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man Machine Systems, 10(2), 47–53. https://doi.org/10.1109/TMMS.1969.299896.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campa, R., Bernal, J., Soto, I. (2018). Modeling and Motion Control of the 6-3-PUS-Type Hexapod Parallel Mechanism. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77770-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77769-6

  • Online ISBN: 978-3-319-77770-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics