Skip to main content

A Multistart Alternating Tabu Search for Commercial Districting

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10782))

Abstract

In this paper we address a class of commercial districting problems that arises in the context of the distribution of goods. The problem aims at partitioning an area of distribution, which is modeled as an embedded planar graph, into connected components, called districts. Districts are required to be mutually balanced with respect to node attributes, such as number of customers, expected demand, and service cost, and as geometrically-compact as possible, by minimizing their Euclidean diameters. To solve this problem, we propose a multistart algorithm that repeatedly constructs solutions greedily and improves them by two alternating tabu searches, one aiming at achieving feasibility through balancing and the other at maximizing district compactness. Computational experiments confirm the effectiveness of the different components of our method and show that it significantly outperforms the current state of the art, improving known upper bounds in almost all instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ricca, F., Scozzari, A., Simeone, B.: Political districting: from classical models to recent approaches. Ann. Oper. Res. 204(1), 271–299 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ricca, F., Simeone, B.: Local search algorithms for political districting. Eur. J. Oper. Res. 189(3), 1409–1426 (2008)

    Article  Google Scholar 

  3. Bozkaya, B., Erkut, E., Haight, D., Laporte, G.: Designing new electoral districts for the city of Edmonton. Interfaces 41(6), 534–547 (2011)

    Article  Google Scholar 

  4. Bação, F., Lobo, V., Painho, M.: Applying genetic algorithms to zone design. Soft. Comput. 9(5), 341–348 (2005)

    Article  Google Scholar 

  5. Ríos-Mercado, R.Z., Fernández, E.: A reactive GRASP for a commercial territory design problem with multiple balancing requirements. Comput. Oper. Res. 36(3), 755–776 (2009)

    Article  Google Scholar 

  6. Lei, H., Laporte, G., Liu, Y., Zhang, T.: Dynamic design of sales territories. Comput. Oper. Res. 56, 84–92 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ríos-Mercado, R.Z., Escalante, H.J.: GRASP with path relinking for commercial districting. Exp. Syst. Appl. 44, 102–113 (2016). (September 2015)

    Article  Google Scholar 

  8. Camacho-Collados, M., Liberatore, F., Angulo, J.M.: A multi-criteria Police Districting Problem for the efficient and effective design of patrol sector. Eur. J. Oper. Res. 246(2), 674–684 (2015)

    Article  Google Scholar 

  9. Steiner, M.T.A., Datta, D., Steiner Neto, P.J., Scarpin, C.T., Rui Figueira, J.: Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil. Omega 52, 53–64 (2015)

    Article  Google Scholar 

  10. Blais, M., Lapierre, S.D., Laporte, G.: Solving a home-care districting problem in an urban setting. J. Oper. Res. Soc. 54(11), 1141–1147 (2003)

    Article  Google Scholar 

  11. Gliesch, A., Ritt, M., Moreira, M.C.O.: A genetic algorithm for fair land allocation. In: Genetic and Evolutionary Computation Conference, pp. 793–800. ACM Press (2017)

    Google Scholar 

  12. Kalcsics, J.: Districting problems. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 595–622. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13111-5_23

    Chapter  Google Scholar 

  13. Salazar-Aguilar, M.A., Ríos-Mercado, R.Z., Cabrera-Ríos, M.: New models for commercial territory design. Netw. Spat. Econ. 11(3), 487–507 (2011)

    Article  MathSciNet  Google Scholar 

  14. Salazar-Aguilar, M.A., Ríos-Mercado, R.Z., González-Velarde, J.L.: GRASP strategies for a bi-objective commercial territory design problem. J. Heuristics 19(2), 179–200 (2013)

    Article  Google Scholar 

  15. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)

    Article  MathSciNet  Google Scholar 

  16. Butsch, A., Kalcsics, J., Laporte, G.: Districting for arc routing. INFORMS J. Comput. 26(October), 809–824 (2014)

    Article  MathSciNet  Google Scholar 

  17. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  MathSciNet  Google Scholar 

  18. Erkut, E., Ülküsal, Y., Yeniçerioğlu, O.: A comparison of p-dispersion heuristics. Comput. Oper. Res. 21(10), 1103–1113 (1994)

    Article  Google Scholar 

  19. Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Process. Lett. 2(6), 160–161 (1974)

    Article  MathSciNet  Google Scholar 

  20. Ła̧cki, J., Sankowski, P.: Optimal decremental connectivity in planar graphs. Theory Comput. Syst. 61(4), 1037–1053 (2016)

    Article  MathSciNet  Google Scholar 

  21. King, D.M., Jacobson, S.H., Sewell, E.C., Cho, W.K.T.: Geo-graphs: an efficient model for enforcing contiguity and hole constraints in planar graph partitioning. Oper. Res. 60(5), 1213–1228 (2012)

    Article  MathSciNet  Google Scholar 

  22. Shamos, M.I.: Computational Geometry. Ph.D. thesis (1978)

    Google Scholar 

  23. Har-Peled, S.: On the Expected Complexity of Random Convex Hulls, pp. 1–20, November 2011. http://arxiv.org/abs/1111.5340

  24. Andrew, A.M.: Another efficient algorithm for convex hulls in two dimensions. Inf. Process. Lett. 9(5), 216–219 (1979)

    Article  Google Scholar 

  25. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)

    Article  MathSciNet  Google Scholar 

  26. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  27. Chou, C., Kimbrough, S.O., Sullivan-Fedock, J., Woodard, C.J., Murphy, F.H.: Using interactive evolutionary computation (IEC) with validated surrogate fitness functions for redistricting. In: Genetic and Evolutionary Computation Conference, pp. 1071–1078 (2012)

    Google Scholar 

  28. Fernández, E., Kalcsics, J., Nickel, S.: The maximum dispersion problem. Omega 41(4), 721–730 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian funding agencies CNPq (grant 420348/2016-6), FAPEMIG (grant TEC-APQ-02694-16) and by Google Research Latin America (grant 25111). We would also like to thank to support of the Fundação de Desenvolvimento Científico e Cultural (FUNDECC/UFLA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Gliesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gliesch, A., Ritt, M., Moreira, M.C.O. (2018). A Multistart Alternating Tabu Search for Commercial Districting. In: Liefooghe, A., López-Ibáñez, M. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2018. Lecture Notes in Computer Science(), vol 10782. Springer, Cham. https://doi.org/10.1007/978-3-319-77449-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77449-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77448-0

  • Online ISBN: 978-3-319-77449-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics