Skip to main content

Tight Kernels for Covering and Hitting: Point Hyperplane Cover and Polynomial Point Hitting Set

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

The Point Hyperplane Cover problem in \(\mathbb {R}^d\) takes as input a set of n points in \(\mathbb {R}^d\) and a positive integer k. The objective is to cover all the given points with a set of at most k hyperplanes. The D-Polynomial Points Hitting Set (D-Polynomial Points HS) problem in \(\mathbb {R}^d\) takes as input a family \(\mathcal {F}\) of D-degree polynomials from a vector space \(\mathcal {R}\) in \(\mathbb {R}^d\), and determines whether there is a set of at most k points in \(\mathbb {R}^d\) that hit all the polynomials in \(\mathcal {F}\). For both problems, we exhibit tight kernels where k is the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshani, P., Berglin, E., van Duijn, I., Nielsen, J.S.: Applications of incidence bounds in point covering problems. In: SoCG, pp. 60:1–60:15 (2016)

    Google Scholar 

  2. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. TCS 237(1–2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashok, P., Kolay, S., Misra, N., Saurabh, S.: Unique covering problems with geometric sets. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 548–558. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9_43

    Chapter  Google Scholar 

  4. Ashok, P., Kolay, S., Saurabh, S.: Multivariate complexity analysis of geometric red blue set cover. Algorithmica 79, 1–31 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Boissonnat, J., Dutta, K., Ghosh, A., Kolay, S.: Kernelization of the subset general position problem in geometry. In: MFCS, pp. 25:1–25:13 (2017)

    Google Scholar 

  6. Bringmann, K., Kozma, L., Moran, S., Narayanaswamy, N.S.: Hitting set for hypergraphs of low VC-dimension. In: ESA, pp. 23:1–23:18 (2016)

    Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 3. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  8. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: STOC, pp. 251–260. ACM (2010)

    Google Scholar 

  9. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pages 624–633. ACM (2014)

    Google Scholar 

  10. Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing rectangles and squares in the plane. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 298–309. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00202-1_26

    Chapter  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9. 530 p.

    Book  MATH  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag, New York Inc., Secaucus (2006). https://doi.org/10.1007/3-540-29953-X

    MATH  Google Scholar 

  13. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Comput. J. 51(3), 372–384 (2008)

    Article  Google Scholar 

  14. Heggernes, P., Kratsch, D., Lokshtanov, D., Raman, V., Saurabh, S.: Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing via iterative localization. Inf. Comput. 231, 109–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karp, R.M.: Reducibility among combinatorial problems. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958–2008 - From the Early Years to the State-of-the-Art, pp. 219–241. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_8

    Google Scholar 

  16. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight. TALG 12(3), 40 (2016)

    Article  MathSciNet  Google Scholar 

  17. Langerman, S., Morin, P.: Covering things with things. DCG 33(4), 717–729 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Matoušek, J.: Lectures on Discrete Geometry, vol. 212. Springer Science & Business Media, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

    Book  MATH  Google Scholar 

  19. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett. 1(5), 194–197 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04565-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boissonnat, JD., Dutta, K., Ghosh, A., Kolay, S. (2018). Tight Kernels for Covering and Hitting: Point Hyperplane Cover and Polynomial Point Hitting Set . In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics