Skip to main content

Compact Self-Stabilizing Leader Election for General Networks

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

We present a self-stabilizing leader election algorithm for general networks, with space-complexity \(O(\log \varDelta +\log \log n)\) bits per node in n-node networks with maximum degree \(\varDelta \). This space complexity is sub-logarithmic in n as long as \(\varDelta = n^{o(1)}\). The best space-complexity known so far for general networks was \(O(\log n)\) bits per node, and algorithms with sub-logarithmic space-complexities were known for the ring only. To our knowledge, our algorithm is the first algorithm for self-stabilizing leader election to break the \(\varOmega (\log n)\) bound for silent algorithms in general networks. Breaking this bound was obtained via the design of a (non-silent) self-stabilizing algorithm using sophisticated tools such as solving the distance-2 coloring problem in a silent self-stabilizing manner, with space-complexity \(O(\log \varDelta +\log \log n)\) bits per node. Solving this latter coloring problem allows us to implement a sub-logarithmic encoding of spanning trees — storing the IDs of the neighbors requires \(\varOmega (\log n)\) bits per node, while we encode spanning trees using \(O(\log \varDelta +\log \log n)\) bits per node. Moreover, we show how to construct such compactly encoded spanning trees without relying on variables encoding distances or number of nodes, as these two types of variables would also require \(\varOmega (\log n)\) bits per node.

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French state funds managed by the ANR (Agence Nationale de la Recherche).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating practical tolerance properties of stabilizing programs through simulation: the case of propagation of information with feedback. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 126–132. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-5_13

    Chapter  Google Scholar 

  2. Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by power supply. Chicago J. Theor. Comput. Sci. (1998)

    Google Scholar 

  3. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for general networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 15–28. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-7_2

    Chapter  Google Scholar 

  4. Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038 (1994)

    Article  MATH  Google Scholar 

  5. Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network reset. In: PODC, pp. 254–263. ACM (1994)

    Google Scholar 

  6. Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm. Theor. Comput. Sci. 444, 28–39 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blin, L., Boubekeur, F., Dubois, S.: A self-stabilizing memory efficient algorithm for the minimum diameter spanning tree under an omnipotent daemon. In: IPDPS 2015, pp. 1065–1074 (2015)

    Google Scholar 

  8. Blin, L., Fraigniaud, P.: Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees. In: Proceedings of ICDCS 2015, pp. 589–598 (2015)

    Google Scholar 

  9. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)log(n)-approximation algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–112 (2013)

    Article  MATH  Google Scholar 

  10. Blin, L., Tixeuil, S.: Compact deterministic self-stabilizing leader election on a ring: the exponential advantage of being talkative. Distrib. Comput. 1–28 (2017). https://doi.org/10.1007/s00446-017-0294-2

  11. Blin, L., Tixeuil, S.: Compact self-stabilizing leader election for arbitrary networks. Technical report 1702.07605, ArXiv eprint, Febrary 2017

    Google Scholar 

  12. Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for constructing spanning trees. Inf. Process. Lett. 39(3), 147–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Collin, Z., Dolev, S.: Self-stabilizing depth-first search. Inf. Process. Lett. 49(6), 297–301 (1994)

    Article  MATH  Google Scholar 

  14. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. J. Aerosp. Comput. Inf. Commun. (JACIC) 3(10), 498–514 (2006)

    Article  MATH  Google Scholar 

  15. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization. Acta Inf. 36(6), 447–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distrib. Comput. 7(1), 3–16 (1993)

    Article  MATH  Google Scholar 

  18. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. Technical report 1110.0334, ArXiv eprint, October 2011

    Google Scholar 

  19. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

    Article  MATH  Google Scholar 

  20. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under unfair scheduler. In: Sakellariou, R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44681-8_67

    Chapter  Google Scholar 

  21. Herman, T., Pemmaraju, S.V.: Error-detecting codes and fault-containing self-stabilization. Inf. Process. Lett. 73(1–2), 41–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27820-7_6

    Chapter  Google Scholar 

  23. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon without global identifiers. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 195–212. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_17

    Chapter  Google Scholar 

  24. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal matching algorithm under distributed daemon for arbitrary networks. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 93–108. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_7

    Chapter  Google Scholar 

  25. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: Proceedings of PODC 2011, pp. 311–320. ACM, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lélia Blin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blin, L., Tixeuil, S. (2018). Compact Self-Stabilizing Leader Election for General Networks. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics