Skip to main content

Control of a Magnetic Levitation System

  • Chapter
  • First Online:
Automatic Control with Experiments

Abstract

Magnetic levitation systems are very important at present because of their numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that the switch SW2 in Fig. 13.3 is closed.

  2. 2.

    If SW2 is closed in Fig. 13.3 or, equivalently, SW2 selects the signal \(x_1^*\) in Fig. 13.7, then the signal \(-X_1^*(s)\) at the left of the block diagrams in Fig. 13.8 must not be considered.

  3. 3.

    These poles can also be obtained as the fastest poles in G p (s).

References

  1. J. D. Kraus, Electromagnetics, McGraw-Hill, Singapore, 1992.

    MATH  Google Scholar 

  2. Several authors, Special issue on magnetic bearing control, IEEE Transactions on Control Systems Technology, Vol.4, No. 5, 1996.

    Google Scholar 

  3. M. Y. Chen, C. F. Tsai, H. H. Huang, and L. C. Fu, Integrated design for a planar MagLev for micro positioning, in Proc. American Control Conference, pp. 3066–3071, Portland, 2005.

    Google Scholar 

  4. J. Lévine, J. Lottin, and J. C. Ponsart, A nonlinear approach to the control of magnetic bearings, IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 524–544, 1996.

    Article  Google Scholar 

  5. M. G. Feemster, Y. Fang, and D. Dawson, Disturbance rejection for a magnetic levitation system, IEEE Transactions on Mechatronics, vol. 11, no. 6, pp. 709–717, 2006.

    Article  Google Scholar 

  6. J.-C. Shen, H control and sliding mode control of magnetic levitation system, Asian Journal of Control, vol. 4, no. 3, pp. 333–340, 2002.

    Article  MathSciNet  Google Scholar 

  7. R. Ortega, A. van der Schaft, I. Mareels, and B. Maschke, Putting energy back in control, IEEE Control Systems Magazine, pp. 18–33, April 2001.

    Google Scholar 

  8. R. Ortega, A. Loría, P. J. Nicklasson, and H. Sira-Ramírez, Passivity-based control of Euler-Lagrange Systems, Springer, London, 1998.

    Book  Google Scholar 

  9. B. Lantos and L. Márton, Nonlinear control of vehicles and robots, Springer, London, 2011.

    Book  Google Scholar 

  10. M. S. de Queiroz and D. Dawson, Nonlinear control of active magnetic bearings: a backstepping approach, IEEE Transactions on Control Systems Technology, vol. 4, no. 5, pp. 545–552, 1996.

    Article  Google Scholar 

  11. H. Khalil, Nonlinear Systems, 3rd Edition, Prentice-Hall, Upper Saddle River, 2002.

    MATH  Google Scholar 

  12. W. Hurley, M. Hynes, and W. Wolfle, PWM Control of a magnetic suspension system, IEEE Transactions on Education, vol. 47, no. 2, pp. 165–173, 2004.

    Article  Google Scholar 

  13. W. Hurley and W. Wolfle, Electromagnetic design of a magnetic suspension system, IEEE Transactions on Education, vol. 40, no. 2, pp. 124–130, 1997.

    Article  Google Scholar 

  14. T.-J. Tarn, A. K. Bejczy, X. Yun, and Z. Li, Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Transactions on Robotics and Automation, vol. 7, pp. 114–122, 1991.

    Article  Google Scholar 

  15. S. Eppinger and W. Seering, Introduction to dynamic models for robot force control. IEEE Control Systems Magazine, vol. 7, pp. 48–52, 1987.

    Article  Google Scholar 

  16. G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design, Prentice-Hall, Upper Saddle River, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández-Guzmán, V.M., Silva-Ortigoza, R. (2019). Control of a Magnetic Levitation System. In: Automatic Control with Experiments. Advanced Textbooks in Control and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-75804-6_13

Download citation

Publish with us

Policies and ethics