Skip to main content

Fluid Management and Electrolyte Balance

  • Chapter
  • First Online:
Postoperative Critical Care for Adult Cardiac Surgical Patients

Abstract

Cardiac surgery is responsible for profound modification in body water distribution, electrolyte plasma concentration, and acid-base balance. Maintaining homeostasis must take into account the kind of surgery, the alterations due to anesthesia, the effects of cardiopulmonary bypass, patient’s comorbidities, and his own response to surgical stress. The ideal approach to perioperative fluid management is still debated in all clinical contest and in cardiac surgery patients in particular, since a load of fluid is generally needed because of cardiopulmonary bypass priming. The debate involves the kind of fluid to use (crystalloids vs. colloids, colloid vs. colloid, balanced vs. unbalance solutions) and the amount of fluid to administer (liberal, restrictive, goal-directed therapy). In this debate economics interests have influenced literature productions and results, leading more difficult the interpretation of many results and complicating clinical application of scientific founds in routinely practice. Electrolytes are always modified after cardiac surgery. With respect to the past, the benefit of their administration (in particular calcium) has been discussed in literature. In this chapter the basis of fluid and electrolyte management in cardiac surgery patient is explained, through understanding physiology and pathophysiology and considering with critical approach literature evidences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Adams HA. Volumen und Flüssigkeitsersatz—Physiologie, Pharmakologie und klinischer Einsatz. Anästh Intensivmed. 2007;48:448–60.

    Google Scholar 

  • Adamson JW. New blood, old blood, or no blood? N Engl J Med. 2008;358:1295–6.

    Article  PubMed  CAS  Google Scholar 

  • Agro FE, Benedetto M. Properties and composition of plasma substitutes. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.

    Chapter  Google Scholar 

  • Agro FE, Vennari M. Physiology of body fluid compartments and body fluid movements. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013a.

    Chapter  Google Scholar 

  • Agro FE, Vennari M. Clinical treatment: the right fluid in the right quantity. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013b.

    Chapter  Google Scholar 

  • Agrò FE, Fries D, Vennari M. Cardiac Surgery. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.

    Chapter  Google Scholar 

  • Agro FE, Fries D, Benedetto M. How to maintain and restore the balance: colloids. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.

    Chapter  Google Scholar 

  • Allhoff T, Lenhart FP. Severe dextran-induced anaphylactic/anaphylactoid reaction in spite of hapten prophylaxis. Infusionsther Transfusionsmed. 1993;20:301–6.

    PubMed  CAS  Google Scholar 

  • Allison KP, Gosling P, Jones S, et al. Randomized trial of hydroxyethyl starch versus gelatin for trauma resuscitation. J Trauma. 1999;47:1114–21.

    Article  PubMed  CAS  Google Scholar 

  • Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine. 1976;55:121–9.

    Article  PubMed  CAS  Google Scholar 

  • Arkilic CF, Taguchi A, Sharma N, et al. Supplemental perioperative fluid administration increases tissue oxygen pressure. Surgery. 2003;133:49–55.

    Article  PubMed  Google Scholar 

  • Arthurson G, Granath K, Thoren L, et al. The renal excretion of LMW dextran. Acta Clin Scand. 1964;127:543–51.

    Google Scholar 

  • Atik M. Dextran-40 and dextran-70, a review. Arch Surg. 1967;94:664–7.

    Article  PubMed  CAS  Google Scholar 

  • Auler JOJ, Galas F, Hajjar L, et al. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg. 2008;106:1201–6.

    Article  PubMed  Google Scholar 

  • Balogh Z, McKinley BA, Cocanour CS, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138:633–42.

    Article  Google Scholar 

  • Bamboat ZM, Bordeianou L. Perioperative fluid management. Clin Colon Rectal Surg. 2009;22(1):28–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron JF. Adverse effects of colloids on renal function. In: Vincent JL, editor. Yearbook of intensive care and emergency medicine. 1st ed. Berlin: Springer; 2000.

    Google Scholar 

  • Barron ME, Wilkes NRJ. A systematic review of the comparative safety of colloids. Arch Surg. 2004;139:552–63.

    Article  PubMed  CAS  Google Scholar 

  • Base EM, Standl T, Lassnigg A, et al. Efficacy and safety of hydroxyethyl starch 6% 130/0.4 in a balanced electrolyte solution (Volulyte) during cardiac surgery. J Cardiothorac Vasc Anesth. 2011;25(3):407–14.

    Article  PubMed  CAS  Google Scholar 

  • Belloni L, Pisano A, Natale A, et al. Assessment of fluid responsiveness parameters for off-pump coronary artery bypass surgery: a comparison among LiDCO, transesophageal echocardiography, and pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2008;22:243–8.

    Article  PubMed  Google Scholar 

  • Bendjelid K, Suter PM, Romand JA. The respiratory change in preejection period: a new method to predict fluid responsiveness. J Appl Physiol. 2004;96:337–42.

    Article  PubMed  Google Scholar 

  • Benes J, Cytra I, Altmann P, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: result of prospective randomized study. Crit Care. 2010;14:R118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett-Guerrero E, Kahn RA, Moskowitz DM, et al. Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery. Mt Sinai J Med. 2002;69:96–100.

    PubMed  Google Scholar 

  • Bernard C. Introdution à l’étude de la médecine expérimentale. Paris: J. B. Baillière et fils; 1865.

    Google Scholar 

  • Booth J, Philips-Bute B, McCants C, et al. Low serum magnesium level predicts major adverse cardiac events after coronary artery bypass graft surgery. Am Heart J. 2003;145:1108–13.

    Article  PubMed  CAS  Google Scholar 

  • Boyd DR, Mansberger AR Jr. Serum water and osmolal changes in hemorrhagic shock: an experimental and clinical study. Am Surg. 1968;34:744–9.

    PubMed  CAS  Google Scholar 

  • Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.

    Article  PubMed  Google Scholar 

  • Brandstrup B, Tønnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breukers RM, de Wilde RBP, van den Berg PCM, et al. Assessing fluid responses after coronary surgery: role of mathematical coupling of global end-diastolic volume to cardiac output measured by transpulmonary thermodilution. Eur J Anaesthesiol. 2009a;26:954–60.

    Article  PubMed  Google Scholar 

  • Breukers RM, Trof RJ, de Wilde RBP, et al. Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery. Eur J Cardiothorac Surg. 2009b;35:62–8.

    Article  PubMed  Google Scholar 

  • Brock H, Gabriel C, Bibl D, et al. Monitoring intravascular volumes for postoperative volume therapy. Eur J Anaesthesiol. 2002;19:288–94.

    Article  PubMed  CAS  Google Scholar 

  • Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9.

    Article  PubMed  CAS  Google Scholar 

  • Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  PubMed  CAS  Google Scholar 

  • Buhre W, Buhre K, Kazmaier S, et al. Assessment of cardiac preload by indicator dilution and transesophageal echocardiography. Eur J Anaesthesiol. 2001;18:662–7.

    Article  PubMed  CAS  Google Scholar 

  • Bunn F, Roberts I, Tasker R, Akpa E. Hypertonic versus isotonic crystalloid for fluid resuscitation in critically ill patients (Cochrane Review). Cochrane Database Syst Rev. 2002;3:CD002045.

    Google Scholar 

  • Caironi P, Langer T, Gattinoni L. Albumin in critically ill patients: the ideal colloid? Curr Opin Crit Care. 2015;21(4):302–8.

    Article  PubMed  Google Scholar 

  • Campbell IT, Baxter JN, Tweedie IE, et al. IV fluids during surgery. Br J Anaesth. 1990;65:726–9.

    Article  PubMed  CAS  Google Scholar 

  • Carl M, Alms A, Braun J, et al. Die intensivmedizinische Versorgung herzchirurgischer Patienten: Hämodynamisches Monitoring und Herz-Kreislauf-Therapie S3-Leitlinie der Deutschen Gesellschaft für Thorax-, Herz- und Gefäbchirurgie (DGTHG) und der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Thorac Cardiovasc Surg. 2000;55:130–48.

    Article  Google Scholar 

  • Cavallaro F, Sandroni C, Antonelli M. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Minerva Anestesiol. 2008;74:123–35.

    PubMed  CAS  Google Scholar 

  • Cervera AL, Moss G. Crystalloid distribution following haemorrhage and haemodilution: mathematical model and prediction of optimum volumes for equilibration at normovolemia. J Trauma. 1974;14:506–20.

    Article  PubMed  CAS  Google Scholar 

  • Chan ST, Kapadia CR, Johnson AW, et al. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg. 1983;70:36–9.

    Article  PubMed  CAS  Google Scholar 

  • Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Article  PubMed  Google Scholar 

  • Cheung AT, Savino JS, Weiss SJ, et al. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376–87.

    Article  PubMed  CAS  Google Scholar 

  • Chytra I, Pradl R, Bosman R, et al. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11(1):R24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabbagh A, Rajaei S, Shamsolhrar M. The effect of intravenous magnesium sulfate on acute postoperative bleeding in elective coronary artery bypass surgery. J Perianesth Nurs. 2010;25:290–5.

    Article  PubMed  Google Scholar 

  • David J, Vivien B, Lecarpentier Y, et al. Extracellular calcium modulates the effects of protamine on rat myocardium. Anesth Analg. 2001;92:817–23.

    Article  PubMed  CAS  Google Scholar 

  • De Hert S, De Baerdemaeker L. Why hydroxyethyl starch solutions should NOT be banned from the operating room. Anaesthesiol Intensive Ther. 2014;46(5):336–41.

    Article  PubMed  Google Scholar 

  • Dehert S, Ten Broeke P, De Mulder P, et al. Effect of calcium on left ventricular function early after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11:846–9.

    Article  Google Scholar 

  • DeJonge E, Levi M. Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med. 2001;29:1261–7.

    Article  CAS  Google Scholar 

  • Deman A, Peeters P, Sennesael J. Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipient. A retrospective, multicenter analysis. Nephrol Dial Transplant. 1999;14:1517–20.

    Article  PubMed  CAS  Google Scholar 

  • DiCorte CJ, Latham P, Greilich PE, et al. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69:1782–6.

    Article  PubMed  CAS  Google Scholar 

  • Dieterich HJ, Weissmuller T, Rosenberger P, et al. Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med. 2006;34:1775–82.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich G, Orth D, Haupt W, et al. Primary hemostasis in hemodilution-infusion solutions. Infusionstherapie. 1990;17:214–6.

    PubMed  CAS  Google Scholar 

  • Dongaonkar R, Stweart R, Geisller H, Laine G. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res. 2010;87:331–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorje P, Adhikary G, Tempe DK. Avoiding iatrogenic hyperchloremic acidosis: call for a new crystalloid fluid. Anesthesiology. 2000;92:625–6.

    Article  PubMed  CAS  Google Scholar 

  • Drt A, Mutter T, Ruth C, et al. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2010;1:CD007594.

    Google Scholar 

  • Drummond JC, Petrovitch CT. Intraoperative blood salvage: fluid replacement calculation. Anesth Analg. 2005;100:645–9.

    Article  PubMed  Google Scholar 

  • Dubois MJ, Vincent JL. Colloid fluids. In: Hahn RG, Prough DS, Svensen CH, editors. Perioperative fluid therapy. 1st ed. New York: Wiley; 2007.

    Google Scholar 

  • Duchesne JC, Kaplan LJ, Balogh ZJ, Malbrain ML. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther. 2015;47(2):143–55.

    Article  PubMed  Google Scholar 

  • Ekery D, Davidoff R, Orlandi Q, et al. Imaging and diagnostic testing: dysfunction after coronary artery bypass grafting: a frequent finding of clinical significance not influenced by intravenous calcium. Am Heart J. 2003;145:896–902.

    Article  PubMed  Google Scholar 

  • England M, Gordon G, Salem M, et al. Magnesium administration and dysrhythmias after cardiac surgery. A placebo controlled double-blind randomized trial. JAMA. 1992;268:2395–402.

    Article  PubMed  CAS  Google Scholar 

  • Ernest D, Belzberg AS, Dodek PM. Distribution of normal saline and 5% albumin infusions in cardiac surgical patients. Crit Care Med. 2001;29:2299–302.

    Article  PubMed  CAS  Google Scholar 

  • Fanzca RY. Perioperative fluid and electrolyte management in cardiac surgery: a review. J Extra Corpor Technol. 2012;44:20–6.

    Google Scholar 

  • Feng X, Yan W, Liu X, et al. Effects of hydroxyethyl starch 130/0.4 on pulmonary capillary leakage and cytokines production and nF-kappaB activation in ClP-induced sepsis in rats. J Surg Res. 2006;135:129–36.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons M, Agnihotri A. Hyponatremia and cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2007;86:1883–7.

    Google Scholar 

  • Fleck A, Raines G, Hawker F, et al. Increased vascular permeability. Major cause of hypoalbuminaemia in disease and injury. Lancet. 1985;1:781–3.

    Article  PubMed  CAS  Google Scholar 

  • Franz A, Bräunlich P, Gamsjäger T, et al. The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg. 2001;92:1402–7.

    Article  PubMed  CAS  Google Scholar 

  • Gallandat Huet RCG, Siemons AW, Baus D, et al. A novel hydroxyethyl starch (VoluvenR) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth. 2000;47:1207–15.

    Article  PubMed  CAS  Google Scholar 

  • Gamble J. Chemical anatomy, physiology and pathology of extracellular fluid. Cambridge: Harvard University Press; 1947.

    Google Scholar 

  • Gandhi SD, Weiskopf RB, Jungheinrich C, et al. Volume replacement therapy during major orthopedic surgery using Voluven® (hydroxyethyl starch 130/0.4) or hetastarch. Anesthesiology. 2007;106:1120–7.

    Article  PubMed  CAS  Google Scholar 

  • Garcia L, Dejong S, Martin S, et al. Magnesium reduces free radicals in an in vivo coronary occlusion reperfusion model. J Am Coll Cardiol. 1998;32:536–9.

    Article  PubMed  CAS  Google Scholar 

  • Ghijselings I, Rex S. Hydroxyethyl starches in the perioperative period. A review on the efficacy and safety of starch solutions. Acta Anaesthesiol Belg. 2014;65(1):9–22.

    PubMed  CAS  Google Scholar 

  • Giglio MT, Marucci M, Testini M, et al. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009;103:637–46.

    Article  PubMed  CAS  Google Scholar 

  • Goedje O, Seebauer T, Peyerl M, et al. Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest. 2000;118:775–81.

    Article  PubMed  CAS  Google Scholar 

  • Goepfer MS, Reuter DA, Akyiol D, et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.

    Article  Google Scholar 

  • Grathwohl KW, Bruns BJ, LeBrun CJ, et al. Does haemodilution exist? Effects of saline infusion on hematologic parameters in euvolemic subjects. South Med J. 1996;89:51–5.

    Article  PubMed  CAS  Google Scholar 

  • Grebe D, Sander M, von Heymann C, et al. Fluid therapy—pathophysiological principles as well as intra- and perioperative monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther. 2006;41:392–8.

    Article  PubMed  Google Scholar 

  • Greenfield RH, Bessen HA, Henneman PL. Effect of crystalloid infusion on hematocrit and intravascular volume in healthy, no bleeding subjects. Ann Emerg Med. 1989;18:51–5.

    Article  PubMed  CAS  Google Scholar 

  • Gries A, Bode C, Gross S, et al. The effect of intravenously administered magnesium on platelet function in patient after cardiac surgery. Anesth Analg. 1999;88:1231–9.

    Article  Google Scholar 

  • Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.

    Article  PubMed  Google Scholar 

  • Habicher M, Perrino AJ, Spies CD, et al. Contemporary fluid management in cardiac anesthesia. J Cardiothorac Vasc Anesth. 2011;25(6):1141–53.

    Article  PubMed  Google Scholar 

  • Hahn RG. Must hypervolaemia be avoided? A critique of the evidence. Anaesthesiol Intensive Ther. 2015;47(5):449–56.

    PubMed  Google Scholar 

  • Hahn RG, Drobin D, Stähle L. Volume kinetics of Ringer’s solution in female volunteers. Br J Anaesth. 1997;78:144–8.

    Article  PubMed  CAS  Google Scholar 

  • Hauser CJ, Shoemaker WC, Turpin I, et al. Oxygen transport responses to colloids and crystalloids in critically ill surgical patients. Surg Gynecol Obstet. 1980;150:811–6.

    PubMed  CAS  Google Scholar 

  • Haynes GH, Havidich JE, Payne KJ. Why the Food and Drug Administration changed the warning label for hetastarch. Anesthesiology. 2004;101:560–1.

    Article  PubMed  Google Scholar 

  • Hecth-Dolkin M, Barkan H, Tahara A, et al. Hetastarch increases the risk of bleeding complications in patients after off-pump coronary by-pass surgery. J Thorac Cardiovasc Surg. 2009;138:703–11.

    Article  Google Scholar 

  • Hendry EB. Osmolarity of human serum and of chemical solutions of biological importance. Clin Chem. 1961;7:156–64.

    CAS  Google Scholar 

  • Herzog W, Schlossberg M, MacMurdy K, et al. Timing of magnesium therapy affects experimental infarct size. Circulation. 1995;92:2622–6.

    Article  PubMed  CAS  Google Scholar 

  • Heßler M, Arnemann PH, Ertmer C. To use or not to use hydroxyethyl starch in intraoperative care: are we ready to answer the ‘Gretchen question’? Curr Opin Anaesthesiol. 2015;28(3):370–7.

    Article  PubMed  CAS  Google Scholar 

  • Hiltebrand LB, Pestel G, Hager H, et al. Perioperative fluid management: comparison of high, medium and low fluid volume on tissue oxygen pressure in the small bowel and colon. Eur J Anaesthesiol. 2007;24:927–33.

    Article  PubMed  CAS  Google Scholar 

  • Hofer CK, Furrer L, Matter-Ensner S, et al. Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth. 2005a;94:748–55.

    Article  PubMed  CAS  Google Scholar 

  • Hofer CK, Müller SM, Furrer L, et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005b;128:848–54.

    Article  PubMed  Google Scholar 

  • Hofer CK, Senn A, Weibel L, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac™ and PiCCOplus™ system. Crit Care. 2008;12:R82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holte K, Kehlet H. Compensatory fluid administration for preoperative dehydration: does it improve outcome? Acta Anaesthesiol Scand. 2002;46:1089–93.

    Article  PubMed  CAS  Google Scholar 

  • Holte K, Klarskov B, Christensen DS, et al. Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized doubleblind study. Ann Surg. 2004;240:892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holte K, Hahn RG, Ravn L, et al. Influence of a “liberal” versus “restrictive” intraoperative fluid administration on elimination of a postoperative fluid load. Anesthesiology. 2007a;106:75–9.

    Article  PubMed  Google Scholar 

  • Holte K, Foss NB, Andersen J, et al. Liberal or restrictive fluid administration in fasttrack colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007b;99:500–8.

    Article  PubMed  CAS  Google Scholar 

  • Holtfreter B, Bandt C, Kuhn SO, et al. Serum osmolality and outcome in intensive care unit patients. Acta Anaesthesiol Scand. 2006;50:970–7.

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Weinbaum S. A new view of Starling’s hypothesis at the micro-structural level. Microvasc Res. 1999;58(3):281–304.

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Adamson RH, Liu B, Curry FE, Weinbaum S. Starling forces that oppose filtration after tissue oncotic pressure is increased. Am J Physiol Heart Circ Physiol. 2000;279(4):H1724–36.

    Article  PubMed  CAS  Google Scholar 

  • Hüter L, Simon TP, Weinmann L, et al. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care. 2009;13:R23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ickx BE, Bepperling F, Melot C, et al. Plasma substitution effects of a new hydroxyethyl starch HES 130/0.4 compared with HES 200/0.5 during and after extended acute normovolaemic haemodilution. Br J Anaesth. 2003;91:196–202.

    Article  PubMed  CAS  Google Scholar 

  • Iriz E, Kolbakir F, Akar H, et al. Comparison of hydroxyethyl starch and ringer as prime solution regarding S-100beta protein levels and informative cognitive tests in cerebral injury. Ann Thorac Surg. 2005;79:666–71.

    Article  PubMed  Google Scholar 

  • Jacob M, Chappel D, Conzen P, et al. Blood volume is normal after overnight fasting. Acta Anaesthesiol Scand. 2008;52:522–9.

    Article  PubMed  CAS  Google Scholar 

  • James MF, Latoo MY, Mythen MG, et al. Plasma volume changes associated with two hydroxyethyl starch colloids following acute hypovolaemia in volunteers. Anaesthesia. 2004;59:738–42.

    Article  PubMed  CAS  Google Scholar 

  • Järhult J. Osmotic fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand. 1973;89:213–26.

    Article  PubMed  Google Scholar 

  • Jarvela K, Koskinen M, Kaukinen S, et al. Effects of hypertonic saline (7.5%) on extracellular fluid volumes compared with normal saline (0.9%) and 6% hydroxyethyl starch after aortocoronary bypass graft surgery. J Cardiothorac Vasc Anesth. 2001;15:210–5.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MT, Giesecke AH, Johnson ER. The postoperative patient and his fluid and electrolyte requirements. Br J Anaesth. 1975;47:143–50.

    Article  PubMed  CAS  Google Scholar 

  • Jones SB, Whitten CW, Monk TG. Influence of crystalloid and colloid replacement solutions on hemodynamic variables during acute normovolemic hemodilution. J Clin Anesth. 2004;16:11–7.

    Article  PubMed  CAS  Google Scholar 

  • Jumgheinrich C, Scharpf R, Wargenau M, et al. The pharmacokinetics and tolerability of an intravenous infusion the new hydroxyethyl starch 130/04 (6% 500 ml) in mild to severe renal impairment. Anaesth Analg. 2002;95:544–51.

    Google Scholar 

  • Kaminski MV, Williams SD. Review of the rapid normalization of serum albumin with modified total parenteral nutrition solutions. Crit Care Med. 1990;18:327–35.

    Article  PubMed  Google Scholar 

  • Kampmeier T, Rehberg S, Ertmer C. Evolution of fluid therapy. Best Pract Res Clin Anaesthesiol. 2014;28(3):207–16.

    Article  PubMed  Google Scholar 

  • Kapoor PM, Kakani M, Chowdhury U, et al. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.

    Article  PubMed  Google Scholar 

  • Karanko MS, Klossner JA, Laaksonen VO. Restoration of volume by crystalloid versus colloid after coronary artery bypass: hemodynamics, lung water, oxygenation, and outcome. Crit Care Med. 1987;15:559–66.

    Article  PubMed  CAS  Google Scholar 

  • Kastrup M, Markewitz A, Spies C, et al. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand. 2007;51:347–58.

    Article  PubMed  CAS  Google Scholar 

  • Kenney PR, Allen-Rowlands CF, Gann DS. Glucose and osmolality as predictors of injury severity. J Trauma. 1983;23:712–9.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Yasue H, Sukaino N, et al. Effects of magnesium on isolated human coronary arteries. After CABG it has been shown as a predictor of major cardiac events. Circulation. 1989;79:118–24.

    Article  Google Scholar 

  • Knotzer H, Filipovic M, Siegemund M, Kleinsasser A. The physiologic perspective in fluid management in vascular anesthesiology. J Cardiothorac Vasc Anesth. 2014;28(6):1604–8.

    Article  PubMed  Google Scholar 

  • Kozek-Langenecker SA. Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology. 2005;103:654–60.

    Article  PubMed  Google Scholar 

  • Kutschen F, Galletti P, Hahn C, et al. Alterations of insulin and glucose metabolism during cardiopulmonary bypass under normothermia. J Thorac Cardiovasc Surg. 1985;89:97–106.

    Google Scholar 

  • Lamke LO, Liljedahl SO. Plasma volume changes after infusion of various plasma expanders. Resuscitation. 1976;5:93–102.

    Article  PubMed  CAS  Google Scholar 

  • Lamke L, Nilsson G, Reithner H. Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand. 1977;143:279–84.

    PubMed  CAS  Google Scholar 

  • Lasks H, Standeven J, Balir O, et al. The effects of cardiopulmonary by-pass with crystalloid and colloid hemodilution on myocardial extravascular water. J Thorac Cardiovasc Surg. 1977;73:129–38.

    Google Scholar 

  • Laxenaire M, Charpentier C, Feldman L. Reactions anaphylactoides aux subitutes colloidaux du plasma: incidence, facteurs de risque, mecanismes. Ann Fr Anest Reanim. 1994;13:301–10.

    Article  CAS  Google Scholar 

  • Lees N, Hamilton M, Rhodes A. Clinical review: goal-directed therapy in high risk surgical patients. Crit Care. 2009;13:231. https://doi.org/10.1186/cc8039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann G, Marx G, Forster H. Bioequivalence comparison between hydroxyethyl starch 130/0.42/6:1 and hydroxyethyl starch 130/0.4/9:1. Drugs R D. 2007;8:229–40.

    Article  PubMed  CAS  Google Scholar 

  • Levick JR. Revision of the Starling principle. New views of tissue fluid balance. J Physiol. 2004;557:704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ley SJ, Miller K, Skov P, et al. Crystalloid versus colloid fluid therapy after cardiac surgery. Heart Lung. 1990;19:31–40.

    PubMed  CAS  Google Scholar 

  • Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Semin Cardiothorac Vasc Anesth. 2014;18(3):252–9.

    Article  Google Scholar 

  • Lobo DN. Sir David Cuthbertson medal lecture. Fluid, electrolytes and nutrition: physiological and clinical aspects. Proc Nutr Soc. 2004;63:453–66.

    Article  PubMed  Google Scholar 

  • Lobo DN, Stanga Z, Simpson JAD, et al. Dilution and redistribution effects of rapid 2- litre infusions of 0.9% (w/v) saline and 5% (w/v) dextrose on haematological parameters and serum biochemistry in normal subjects: a double-blind crossover study. Clin Sci (Lond). 2001;101:173–9.

    Article  CAS  Google Scholar 

  • Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–8.

    Article  PubMed  Google Scholar 

  • Lobo DN, Stanga Z, Aloysius MM, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatin (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, threeway crossover study in healthy volunteers. Crit Care Med. 2010;38:464–70.

    Article  PubMed  CAS  Google Scholar 

  • Lopes MR, Oliveira MA, pereira VO. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowell JA, Schifferdecker C, Driscoll DF, et al. Postoperative fluid overload: not a benign problem. Crit Care Med. 1990;18:728–33.

    Article  PubMed  CAS  Google Scholar 

  • Ma PL, Peng XX, Du B, et al. Sources of heterogeneity in trials reporting hydroxyethyl starch 130/0.4 or 0.42 associated excess mortality in septic patients: a systematic review and meta-regression. Chin Med J. 2015;128(17):2374–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacKay G, Fearon K, McConnachie A, et al. Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg. 2006;93:1469–74.

    Article  PubMed  CAS  Google Scholar 

  • Madjdpour C, Dettori N, Frascarolo P, et al. Molecular weight of hydroxyethyl starch: is there an effect on blood coagulation and pharmacokinetics? Br J Anaesth. 2005;94:569–76.

    Article  PubMed  CAS  Google Scholar 

  • Maharaj CH, Kallam SR, Malik A, et al. Preoperative intravenous fluid therapy decreases postoperative nausea and pain in high risk patients. Anesth Analg. 2005;100:675–82.

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Gosling P, Vohra RK. Randomized clinical trial comparing the effects on renal function of hydroxyethyl starch or gelatin during aortic aneurysm surgery. Br J Surg. 2007;94:427–33.

    Article  PubMed  CAS  Google Scholar 

  • Mahmood A, Gosling P, Barclay R, et al. Splanchnic microcirculation protection by hydroxyethyl starches during abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg. 2009;37:319–25.

    Article  PubMed  CAS  Google Scholar 

  • Makoff DL, da Silva JA, Rosenbaum BJ, et al. Hypertonic expansion: acid-base and electrolyte changes. Am J Phys. 1970;218:1201–7.

    CAS  Google Scholar 

  • Maningas PA, Bellamy RF. Hypertonic sodium chloride solutions for the prehospital management of traumatic hemorrhagic shock: a possible improvement in the standard of care? Ann Emerg Med. 1986;15:1411–4.

    Article  PubMed  CAS  Google Scholar 

  • Margarson MP, Soni N. Serum albumin: touchstone or totem? Anaesthesia. 1998;53:789–803.

    Article  PubMed  CAS  Google Scholar 

  • Marik PE. The treatment of hypoalbuminemia in the critically ill patient. Heart Lung. 1993;22:166–70.

    PubMed  CAS  Google Scholar 

  • Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  • Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  • Marik PE, Cecconi M, Hofer CF. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15:214.

    Article  Google Scholar 

  • Martin G, Bennett-Guerrero E, Wakeling H, et al. A prospective, randomized comparison of thrombelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle, or 6% hydroxyethyl starch in saline during major surgery. J Cardiothorac Vasc Anesth. 2002;16:441–6.

    Article  PubMed  CAS  Google Scholar 

  • McIlroy DR, Kharasch ED. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg. 2003;96(6):1572–7.

    Article  PubMed  Google Scholar 

  • McKendry M, McGloin H, Saberi D, et al. Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ. 2004;329:258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Metze D, Reimann S, Szepfalusi Z, et al. Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol. 1997;136:553–9.

    Article  PubMed  CAS  Google Scholar 

  • Michard F, Teboul J-L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  • Michard F, Alaya S, Zarka V, et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124:1900–8.

    Article  PubMed  Google Scholar 

  • Mille S, Crystal E, Garfinkle K, et al. Effects of magnesium in atrial fibrillation after cardiac surgery: a meta analysis. Heart. 2005;91:618–23.

    Article  CAS  Google Scholar 

  • Miller RD. Miller’s anesthesia. 7th ed. London, UK: Churchill Livingstone; 2009.

    Google Scholar 

  • Mitra S, Khandelwal P. Are all colloids same? How to select the right colloid? Indian J Anaesth. 2009;53(5):592.

    PubMed  PubMed Central  Google Scholar 

  • Moore FD, Steenburg RW, Ball MR, et al. Studies in surgical endocrinology. The urinary excretion of 17-hydroxycorticoids, and associated metabolic changes, in cases of soft tissue trauma of varying severity and in bone trauma. Ann Surg. 1955;141:145–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran M, Kapsner C. Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med. 1987;317:150–3.

    Article  PubMed  CAS  Google Scholar 

  • Moret E, Jacob MW, Ranucci M, Schramko A. Albumin-beyond fluid replacement in cardiopulmonary bypass surgery: why, how, and when? Semin Cardiothorac Vasc Anesth. 2014;18(3):252–9.

    Article  PubMed  Google Scholar 

  • Morissette M, Weil MH, Shubin H. Reduction in colloid osmotic pressure associated with fatal progression of cardiopulmonary failure. Crit Care Med. 1975;3:115–7.

    Article  PubMed  CAS  Google Scholar 

  • Moyer CA. Acute temporary changes in renal function associated with major surgical procedures. Surgery. 1950;27:198–207.

    PubMed  CAS  Google Scholar 

  • Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7:CD007594.

    Google Scholar 

  • Mythen MG, Webb AR. Preoperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130(4):423–9.

    Article  PubMed  CAS  Google Scholar 

  • Nadler SB, Hidalgo JU, Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962;51:224–32.

    PubMed  Google Scholar 

  • Ng KFJ, Lam CCK, Chan IC. In vivo effect of haemodilution with saline on coagulation: a randomized controlled tril. Br J Anaesth. 2002;88:475–80.

    Article  PubMed  CAS  Google Scholar 

  • Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI, et al. Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg. 2006;102:998–1006.

    Article  PubMed  CAS  Google Scholar 

  • Niemi T, Schramko A, Kuitunen A, et al. Haemodynamics and acid-base equilibrium after cardiac surgery: comparison of rapidly degradable hydroxyethyl starch solutions and albumin. Scand J Surg. 2008;97:259–65.

    Article  PubMed  CAS  Google Scholar 

  • Nisanevich V, Felsenstein I, Almogy G, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103:25–32.

    Article  PubMed  Google Scholar 

  • Nuevo FR, Vennari M, Agro FE. How to maintain and restore fluid balance: crystalloids. In: Agrò FE, editor. Body fluid management—from physiology to therapy. 1st ed. Milan: Springer; 2013.

    Google Scholar 

  • Olsson J, Svense’n CH, Hahn RG. The volume kinetics of acetated Ringer’s solution during laparoscopic cholecystectomy. Anesth Analg. 2004;99:1854–60.

    Article  PubMed  Google Scholar 

  • Ooi JS, Ramzisham AR, Zamrin MD. Is 6% hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery? Asian Cardiovasc Thorac Ann. 2009;17:368–72.

    Article  PubMed  Google Scholar 

  • Otsuki D, Fantoni D, Margarido C, et al. Hydroxyethyl starch is superior to ringer as a replacement fluid in pig model of acute normovolemic haemodilution. Br J Anaesth. 2007;98:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo D, Servillo G, D’Amato L, et al. The effects of hydroxyethyl starch solution in critically ill patients. Minerva Anestesiol. 2006;72:655–64.

    PubMed  CAS  Google Scholar 

  • Pearse R, Dawson D, Fawcett J, et al. Changes in central venous saturation after major surgery, and association with outcome. Crit Care. 2005a;9:R694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearse R, Dawson D, Fawcett J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005b;9:R687–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petty TL, Ashbaugh DG. The adult respiratory distress syndrome. Clinical features, factors influencing prognosis and principles of management. Chest. 1971;60(3):233–9.

    Article  PubMed  CAS  Google Scholar 

  • Polderman K, Girbes R. Severe electrolyte disorders following cardiac surgery. A prospective controlled observational study. Crit Care. 2004;8:459–66.

    Article  Google Scholar 

  • Polonen P, Ruokonen E, Hippelainen M, et al. A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg. 2000;90:1052–9.

    Article  PubMed  CAS  Google Scholar 

  • Powell-Tuck J, Gosling P, Lobo DN et al. (2008) British consensus guidelines on intravenous fluid therapy for adult surgical patients. GIFTASUP. http://www.bapen.org.uk/pdfs/bapen_pubs/giftasup.pdf. Accessed 1 April 2010.

  • Pradeep A, Rajagopalam S, Kolli HK, et al. High volumes of intravenous fluid during cardiac surgery are associated with increased mortality. HSR Proceedings in Intensive Care and Cardiovascular. Anesthesia. 2010;2:287–96.

    CAS  Google Scholar 

  • Pries AR, Secomb TW, Sperandi M, Gaehtgens P. Blood flow resistance during hemodilution. Effect of plasma composition. Cardiovasc Res. 1998;37:225–35.

    Article  PubMed  CAS  Google Scholar 

  • Rackow E, Fein AI, Leppo J. Colloid osmotic pressure as a prognostic indicator of pulmonary oedema and mortality in the critically ill. Chest. 1977;72:709–13.

    Article  PubMed  CAS  Google Scholar 

  • Rackow EC, Falk JL, Fein IA, et al. Fluid resuscitation in circulatory shock: a comparison of the cardio-respiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med. 1983;11:839–50.

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan K, Shaw AD, Bagshaw SM. Fluids are drugs: type, dose and toxicity. Curr Opin Crit Care. 2013;19(4):290–8.

    Article  PubMed  Google Scholar 

  • Raja SG, Akhtar S, Shahbaz Y, et al. In cardiac surgery patients does Voluven® impair coagulation less than other colloids? Interact Cardiovasc Thorac Surg. 2011;12:1022–7.

    Article  PubMed  Google Scholar 

  • Rajnish KJ, et al. Albumin: an overview of its place in current clinical practice. J Indian An. 2004;53:592–607.

    Google Scholar 

  • Rasmussen KC, Secher NH, Pedersen T. Effect of perioperative crystalloid or colloid fluid therapy on hemorrhage, coagulation competence, and outcome: a systematic review and stratified meta-analysis. Medicine (Baltimore). 2016;95(31):e4498.

    Article  CAS  Google Scholar 

  • Ravn H, Moeldrup U, Brookes C, et al. Intravenous magnesium reduces infarct size after ischemia/reperfusion injury combined with a thrombogenic lesion in the left anterior descending artery. Arterioscler Thromb Vasc Biol. 1999;19:569–74.

    Article  PubMed  CAS  Google Scholar 

  • Reed RK, Rubin K. Transcapillary exchange: role and importance of the interstitial fluid pressure and the extracellular matrix. Cardiovasc Res. 2010;87:211–7.

    Article  PubMed  CAS  Google Scholar 

  • Rehm M. Limited applications for hydroxyethyl starch: background and alternative concepts. Anaesthesist. 2013;62(8):644–55.

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5T albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95:849–56.

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Zahler S, Lotsc M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology. 2004;100:1211–23.

    Article  PubMed  CAS  Google Scholar 

  • Rehm R, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906.

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Hulde N, Kammerer T, Meidert AS, et al. State of the art in fluid and volume therapy: a user-friendly staged concept. Anaesthesist. 2017;66(3):153–67.

    Article  PubMed  CAS  Google Scholar 

  • Reid F, Lobo DN, Williams RN, et al. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24.

    CAS  Google Scholar 

  • Reuter DA, Felbinger TW, Moerstedt K, et al. Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth. 2002a;16:191–5.

    Article  PubMed  Google Scholar 

  • Reuter DA, Felbinger TW, Kilger E, et al. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth. 2002b;88:124–6.

    Article  PubMed  CAS  Google Scholar 

  • Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.

    Article  PubMed  Google Scholar 

  • Reuter DA, Huang C, Edrich T, et al. Cardiac output monitoring using indicator dilution techniques: basic, limits and perspectives. Anesth Analg. 2010;110:799–811.

    Article  PubMed  Google Scholar 

  • Roberts JS, Bratton SL. Colloid volume expanders. Problems, pitfalls and possibilities. Drugs. 1998;55(5):621–30.

    Article  PubMed  CAS  Google Scholar 

  • Roche AM, James MF, Grocott MP, et al. Coagulation effects of in vitro serial haemodilution with a balanced electrolyte hetastarch solution compared with a saline-based hetastarch solution and lactated Ringer’s solution. Anaesthesia. 2002;57:950–5.

    Article  PubMed  CAS  Google Scholar 

  • Roessler M, Bode K, Bauer M. Fluid resuscitation in hemorrhage. Anaesthesist. 2014;63(10):730–44.

    Article  PubMed  CAS  Google Scholar 

  • Rubin H, Carlson S, DeMeo M, et al. Randomized, double-blind study of intravenous human albumin in hypoalbuminemic patients receiving total parenteral nutrition. Crit Care Med. 1997;25:249–52.

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Navickis RJ, Wilkes MM. Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth. 2004;18:429–37.

    Article  PubMed  CAS  Google Scholar 

  • Ruttmann TG, James MFM, Lombard EM, et al. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to predilution concentration. Anaesth Intesive Care. 2001;29:489–93.

    CAS  Google Scholar 

  • Ruttmann TG, James MFM, Finlayson J, et al. Effects on coagulation of intravenous crystalloid or colloid in patients undergoing peripheral vascular surgery. Br J Anaesth. 2002;89:226–30.

    Article  PubMed  CAS  Google Scholar 

  • Sakka SG, Becher L, Kozieras J, et al. Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol. 2009;26:322–7.

    Article  PubMed  Google Scholar 

  • Sanfelippo MJ, Suberviola PD, Geimer NF. Development of a von Willebrand-like syndrome after prolonged use of hydroxyethyl starch. Am J Clin Pathol. 1987;88:653–5.

    Article  PubMed  CAS  Google Scholar 

  • Scharbert G, Deusch E, Kress HG, et al. Inhibition of platelet function by hydroxyethyl starch solutions in chronic pain patients undergoing peridural anesthesia. Anesth Analg. 2004;99:823–7.

    Article  CAS  Google Scholar 

  • Schell RM, Applegate RL, Cole DJ. Salt, starch, and water on the brain. J Neurosurg Anesthesiol. 1996;18:179–82.

    Google Scholar 

  • Schindler AW, Marx G. Evidence-based fluid management in the ICU. Curr Opin Anaesthesiol. 2016;29(2):158–65.

    Article  PubMed  Google Scholar 

  • Serpa Neto A, Veelo DP, Peireira VG, et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: a systematic review and meta-analysis of the literature. J Crit Care. 2014;29(1):185.e1–7.

    Article  CAS  Google Scholar 

  • Shandall A, Lowndes R, Young HL. Colonic anastomotic healing and oxygen tension. Br J Surg. 1985;72:606–9.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WG, Lowndes RH, Young HL. Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum. 1987;30:867–71.

    Article  PubMed  CAS  Google Scholar 

  • Shires T, Williams J, Borwn F. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoemaker WC, Appel PL, Kram HB, et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.

    Article  PubMed  CAS  Google Scholar 

  • Sirvinskas E, Sneider E, Svagzdiene M, et al. Hypertonic hydroxyethyl starch solution for hypovolaemia correction following heart surgery. Perfusion. 2007;22:121–7.

    Article  PubMed  Google Scholar 

  • Smetkin AA, Kirov MY, Kuzkov VV, et al. Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand. 2009;53:505–14.

    Article  PubMed  CAS  Google Scholar 

  • Solanke TF, Khwaja MS, Kadomemu EL. Plasma volume studies with four different plasma volume expanders. J Surg Res. 1971;11:140–3.

    Article  PubMed  CAS  Google Scholar 

  • Stein L, Berand J, Morisette M. Pulmonary edema during volume infusion. Circulation. 1975;52:483–9.

    Article  PubMed  CAS  Google Scholar 

  • Stögermüller B, Stark J, Willschke H, et al. The effect of hydroxyethylstarch 200 kD on platelet function. Anesth Analg. 2000;91:823–7.

    Article  PubMed  Google Scholar 

  • Strauss RG, Pennell BJ, Stump DC. A randomized, blinded trial comparing the hemostatic effects of pentastarch versus hetastarch. Transfusion. 2002;42:27–36.

    Article  PubMed  CAS  Google Scholar 

  • Study Investigators SAFE, Finfer S, McEvoy S, et al. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.

    Article  CAS  Google Scholar 

  • Takil A, Eti Z, Irmak P, et al. Early postoperative respiratory acidosis after large intravascular volume infusion of lactated Ringer’s solution during major spine surgery. Anesth Analg. 2002;95:294–8.

    Article  PubMed  CAS  Google Scholar 

  • Tatara T, Tashiro C. Quantitative analysis of fluid balance during abdominal surgery. Anesth Analg. 2007;104:347–54.

    Article  PubMed  Google Scholar 

  • Tian J, Lin X, Guan R, et al. The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg. 2004;98:768–74.

    Article  PubMed  CAS  Google Scholar 

  • Tobias MD, Wambold D, Pilla MA, et al. Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9% saline on whole blood coagulation. J Clin Anesth. 1998;8:366–71.

    Article  Google Scholar 

  • Tommasino C, Moore S, Todd MM. Cerebral effects of isovolemic hemodilution with crystalloid or colloid solutions. Crit Care Med. 1988;16:862–8.

    Article  PubMed  CAS  Google Scholar 

  • Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg. 2000;90:351–5.

    PubMed  CAS  Google Scholar 

  • Traumer LD, Brazeal BA, Schmitz M, et al. Pentafraction reduces the lung lymph response after endotoxin administration in the ovine model. Circ Shock. 1992;36:93–6.

    Google Scholar 

  • Treib J, Baron JF, Grauer MT, et al. An international view of hydroxyethyl starches. Intensive Care Med. 1999;25:258–68.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg B, Vink H, Spaan J. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92:592–4.

    Article  PubMed  CAS  Google Scholar 

  • Van der Linden PJ, De Hert SG, Daper A, et al. 3.5% urea-linked gelatin is as effective as 6% HES 200/0.5 for volume management min cardiac surgery patients. Can J Anaesth. 2004;51:236–41.

    Article  PubMed  Google Scholar 

  • Van der Linden PJ, De Hert SG, Deraedt D, et al. Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: the effects on perioperative bleeding and transfusion needs. Anesth Analg. 2005;101:629–34.

    Article  PubMed  Google Scholar 

  • Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69:488–98.

    Article  PubMed  Google Scholar 

  • Verheij J, van Lingen A, Raijmakers PGHM, et al. Effect of fluid loading with saline or colloids on pulmonary permeability, oedema and lung injury score after cardiac and major vascular surgery. Br J Anaesth. 2006a;96:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Verheij J, van Lingen A, Beishuizen A, et al. Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med. 2006b;32:1030–8.

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen H, Hofland J, Legemate DA, et al. Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial. Trials. 2009;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent JL, Kellum JA, Shaw A, Mythen MG. Should hydroxyethyl starch solutions be totally banned? Crit Care. 2013;17(5):193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent JL, Dubois MJ, Navickis RJ, et al. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003;237:319–34.

    PubMed  PubMed Central  Google Scholar 

  • Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry. New York: Wiley; 2001.

    Google Scholar 

  • Vretzakis G, Kleitsaki A, Aretha D, Karanikolas M. Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery. Heart Surg Forum. 2011;14:E28–39.

    Article  PubMed  Google Scholar 

  • Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN. Efficacy of hypertonic 7.5% saline and 6% dextran-70 in treating trauma: a meta-analysis of controlled clinical studies. Surgery. 1997;122:609–16.

    Article  PubMed  CAS  Google Scholar 

  • Waitzinger J, Bepperling F, Pabst G, et al. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D. 2003;4:149–5.

    Article  PubMed  CAS  Google Scholar 

  • Watenpaugh DE, Yancy CW, Buckey JC, et al. Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion. J Appl Physiol. 1992;73:1218–26.

    Article  PubMed  CAS  Google Scholar 

  • Wiedermann CJ. Reporting bias in trials of volume resuscitation with hydroxyethyl starch. Wien Klin Wochenschr. 2014;126(7–8):189–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiesenack C, Prasser C, Keyl C, et al. Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth. 2001;15:584–8.

    Article  PubMed  CAS  Google Scholar 

  • Wiesenack C, Prasser C, Rodig G, et al. Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg. 2003;96:1254–7.

    Article  PubMed  Google Scholar 

  • Wiesenack C, Fiegl C, Keyser A, et al. Continuously assessed right ventricular end diastolic volume as a marker of cardiac preload and fluid responsiveness in mechanically ventilated cardiac surgical patients. Crit Care. 2005;9:R226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkes NJ, Woolf R, Mutch M, et al. The effect of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.

    Article  PubMed  CAS  Google Scholar 

  • Williams EL, Hildebrand KL, McCormick SA, et al. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003.

    PubMed  CAS  Google Scholar 

  • Wittkowski U, Spies C, Sander M, et al. Haemodynamic monitoring in the perioperative phase. Available systems, practical application and clinical data. Anaesthesist. 2009;58(764–778):780–66.

    Google Scholar 

  • Zaloga G, Strikland R, Butterworth J, et al. Calcium attenuates epinephrine’s betaadrenergic effects in postoperative surgery patients. Circulation. 1990;81:196–200.

    Article  PubMed  CAS  Google Scholar 

  • Zander R. Fluid Management. Melsungen: Bibliomed, Medizinische Verlagsgesellschaft mbH; 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice Eugenio Agrò M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrò, F.E., Vennari, M., Benedetto, M. (2018). Fluid Management and Electrolyte Balance. In: Dabbagh, A., Esmailian, F., Aranki, S. (eds) Postoperative Critical Care for Adult Cardiac Surgical Patients. Springer, Cham. https://doi.org/10.1007/978-3-319-75747-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75747-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75746-9

  • Online ISBN: 978-3-319-75747-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics