Skip to main content

A Probabilistic Proof of the Breakdown of Besov Regularity in L-Shaped Domains

  • Conference paper
  • First Online:
Stochastic Partial Differential Equations and Related Fields (SPDERF 2016)

Abstract

We provide a probabilistic approach in order to investigate the smoothness of the solution to the Poisson and Dirichlet problems in L-shaped domains. In particular, we obtain (probabilistic) integral representations (9), (12)–(14) for the solution. We also recover Grisvard’s classic result on the angle-dependent breakdown of the regularity of the solution measured in a Besov scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass, R.: Probabilistic Techniques in Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  2. Cioica, P., Dahlke, S., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains. Studia Mathematica 207, 197–234 (2011)

    Article  MathSciNet  Google Scholar 

  3. Cioica, P., Dahlke, S., Döhring, N., Friedrich, U., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: On the convergence analysis of spatially adaptive Rothe methods. Found. Comput. Math. 14, 863–912 (2014)

    Article  MathSciNet  Google Scholar 

  4. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  5. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dahlke, S., Dahmen, W., DeVore, R.A.: Nonlinear approximation and adaptive techniques for solving elliptic operator equations. Wavelet Anal. Appl. 6, 237–283 (1997)

    MathSciNet  Google Scholar 

  7. Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. Partial Differ. Equ. 22, 1–16 (1997)

    Article  MathSciNet  Google Scholar 

  8. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Article  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  10. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  11. Jerison, D., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  Google Scholar 

  12. Jonsson, A., Wallin, H.: Function Spaces on Subsets of \({\mathbb{R}^n}\). Harwood Academic, New York (1984)

    MATH  Google Scholar 

  13. Mitrea, D., Mitrea, I.: On the Besov regularity of conformal maps and layer potentials on nonsmooth domains. J. Funct. Anal. 201, 380–429 (2003)

    Article  MathSciNet  Google Scholar 

  14. Mitrea, D., Mitrea, M., Yan, L.: Boundary value problems for the Laplacian in convex and semiconvex domains. J. Funct. Anal. 258, 2507–2585 (2010)

    Article  MathSciNet  Google Scholar 

  15. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  16. Port, S., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  17. Stein, E.M.: Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (NJ) (1993)

    Google Scholar 

  18. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

Download references

Acknowledgements

We thank S. Dahlke (Marburg) who pointed out the reference [11], N. Jacob (Swansea) for his suggestions on the representation of Sobolev–Slobodetskij spaces, and A. Bendikov (Wrocław) who told us about the papers [13, 14]. We are grateful to B. Böttcher for drawing the illustrations and commenting on the first draft of this paper. Financial support from NCN grant 2014/14/M/ST1/00600 (Wrocław) for V. Knopova is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Knopova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knopova, V., Schilling, R.L. (2018). A Probabilistic Proof of the Breakdown of Besov Regularity in L-Shaped Domains. In: Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (eds) Stochastic Partial Differential Equations and Related Fields. SPDERF 2016. Springer Proceedings in Mathematics & Statistics, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-74929-7_32

Download citation

Publish with us

Policies and ethics