Skip to main content

Electrolytic Abnormalities Related to Magnesium in Critically Ill Cancer Patients

  • Living reference work entry
  • First Online:
Oncologic Critical Care

Abstract

Magnesium is a cation found primarily in a bound state and serves as a critical cofactor for ATP-dependent reactions. It is important in physiological processes such as energy release, enzymatic activation, muscle contractility, and synaptic transmission. The homeostasis of magnesium depends on the balance of a variety of factors such as parathyroid hormone, calcitonin, insulin, glucose, ADH, glucagon, catecholamines, and other electrolytes (calcium, sodium, potassium, and phosphorous). Magnesium metabolic disturbances are commonly present in critically ill patients admitted to ICU. Hypermagnesemia and hypomagnesemia may be associated with the development of life-threatening complications and organ dysfunction among ICU cancer patients. They lead to higher morbidity and mortality due to associated conditions as hypokalemia, hypocalcemia, cardiac arrhythmias, neurotoxicity, and psychiatric impairments. Because critically ill patients with cancer are predisposed to both symptomatic and asymptomatic hypermagnesemia and hypomagnesemia, ICU clinicians should avoid and manage them because of their impact on survival and length of ICU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alsirafy SA, Sroor MY, Al-Shahri MZ. Predictive impact of electrolyte abnormalities on the admission outcome and survival of palliative care cancer referrals. J Palliat Med. 2009;12(2):177–80. Available at http://www.liebertonline.com/doi/abs/10.1089/jpm.2008.0200

    Article  Google Scholar 

  2. Bashir H, et al. Cisplatin-induced hypomagnesemia and cardiac dysrhythmia. Pediatr Blood Cancer. 2007;49(6):867–9. Available at http://doi.wiley.com/10.1002/pbc.20804

    Article  Google Scholar 

  3. Broman M, Hansson F, Klarin B. Analysis of hypo- and hypermagnesemia in an intensive care unit cohort. Acta Anaesthesiol Scand. 2018;62(5):648–57. Available at http://www.ncbi.nlm.nih.gov/pubmed/29341068

    Article  CAS  Google Scholar 

  4. Cholst IN, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med. 1984;310(19):1221–5. Available at http://www.nejm.org/doi/abs/10.1056/NEJM198405103101904

    Article  CAS  Google Scholar 

  5. Coburn JW, et al. The physicochemical state and renal handling of divalent ions in chronic renal failure. Arch Intern Med. 1969;124(3):302. Available at http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.1969.00300190042007

    Article  CAS  Google Scholar 

  6. Cohen L, Kitzes R. Pheochromocytoma – a rare cause of hypermagnesemia. Magnesium. 1985;4(2–3): 165–7. Available at http://www.ncbi.nlm.nih.gov/pubmed/4046644

    CAS  PubMed  Google Scholar 

  7. Deheinzelin D, et al. Hypomagnesemia in critically ill cancer patients: a prospective study of predictive factors. Braz J Med Biol Res. 2000;33(12):1443–8. Available at http://www.ncbi.nlm.nih.gov/pubmed/11105096

    Article  CAS  Google Scholar 

  8. Enokida T, et al. Incidence and risk factors of hypomagnesemia in head and neck cancer patients treated with cetuximab. Front Oncol. 2016;6:196. Available at http://www.ncbi.nlm.nih.gov/pubmed/27683640

    Article  Google Scholar 

  9. Escuela MP, et al. Total and ionized serum magnesium in critically ill patients. Intensive Care Med. 2005; 31:151–6.

    Article  Google Scholar 

  10. Esen F, Telci L. Magnesium in the ICU: sine qua non. Berlin/Heidelberg: Springer; 2008. p. 491–501.

    Google Scholar 

  11. Fairley J, et al. Magnesium status and magnesium therapy in critically ill patients: a systematic review. J Crit Care. 2015;30(6):1349–58.

    Article  CAS  Google Scholar 

  12. Fakih MG, Wilding G, Lombardo J. Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer. 2006;6(2):152–6.

    Article  CAS  Google Scholar 

  13. Felsenfeld AJ, Levine BS, Rodriguez M. Pathophysiology of calcium, phosphorus, and magnesium dysregulation in chronic kidney disease. Semin Dial. 2015;28(6):564–77. Available at http://www.ncbi.nlm.nih.gov/pubmed/26303319

    Article  Google Scholar 

  14. Haider DG, et al. Hypermagnesemia is a strong independent risk factor for mortality in critically ill patients: results from a cross-sectional study. Eur J Intern Med. 2015;26(7):504–7.

    Article  CAS  Google Scholar 

  15. Hansen B-A, Bruserud Ø. Hypomagnesemia in critically ill patients. J Intensive Care. 2018;6(1):21. https://doi.org/10.1186/s40560-018-0291-y.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hariri A, Mount DB, Rastegar A. Disorders of calcium, phosphate, and magnesium metabolism. In: Mount DB, Sayegh MH, Singh AK, editors. Core concepts in the disorders of fluid, electrolytes and acid-base balance. Boston: Springer US; 2013. p. 103–46. https://doi.org/10.1007/978-1-4614-3770-3_4.

    Chapter  Google Scholar 

  17. Kasper DL, et al. Hypercalcemia and hypocalcemia. In: Harrison’s manual of medicine. 19th ed. New York: McGraw-Hill Education; 2016.

    Google Scholar 

  18. Koch SM, Warters RD, Mehlhorn U. The simultaneous measurement of ionized and total calcium and ionized and total magnesium in intensive care unit patients. J Crit Care. 2002;17(3):203–5.

    Article  CAS  Google Scholar 

  19. Latcha S. Electrolyte disorders in critically ill patients. In: Oropello JM, Pastores SM, Kvetan V, editors. Critical care. New York: McGraw-Hill Education; 2016.

    Google Scholar 

  20. Lee J-H, et al. Severe metabolic abnormalities after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2005;35(1):63–9.

    Article  Google Scholar 

  21. Limaye CS, et al. Hypomagnesemia in critically ill medical patients. J Assoc Physicians India. 2011;59: 19–22.

    CAS  PubMed  Google Scholar 

  22. López-Saca JM, et al. Hypomagnesemia as a possible explanation behind episodes of severe pain in cancer patients receiving palliative care. Support Care Cancer. 2013;21(2):649–52.

    Article  Google Scholar 

  23. Markman M, et al. Persistent hypomagnesemia following cisplatin chemotherapy in patients with ovarian cancer. J Cancer Res Clin Oncol. 1991;117(2):89–90. https://doi.org/10.1007/BF01613129.

    Article  Google Scholar 

  24. McEvoy C, Murray PT. Electrolyte disorders in critical care. In: Hall JB, Schmidt GA, Kress JP, editors. Principles of critical care. 4th ed. New York: McGraw-Hill Education; 2015.

    Google Scholar 

  25. Moe SM. Disorders involving calcium, phosphorus, and magnesium. Prim Care. 2008;35(2):215–37. Available at http://www.ncbi.nlm.nih.gov/pubmed/18486714

    Article  Google Scholar 

  26. Mordes JP, Wacker WE. Excess magnesium. Pharmacol Rev. 1977;29(4):273–300. Available at http://www.ncbi.nlm.nih.gov/pubmed/364497

    CAS  PubMed  Google Scholar 

  27. Nácul FE, Vieira JM. Disorders of electrolytes. In: O’Donnell JM, Nácul FE, editors. Surgical intensive care medicine. Cham: Springer International Publishing; 2016. p. 539–51. https://doi.org/10.1007/978-3-319-19668-8_40.

    Chapter  Google Scholar 

  28. Navarro JF, Mora-Fernández C. Magnesium in chronic renal failure. In: Nishizawa Y, Morii H, Durlach J, editors. New perspectives in magnesium research: nutrition and health. London: Springer London; 2007. p. 303–15.

    Chapter  Google Scholar 

  29. Noronha LJ, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med. 2002;28(6):667–79.

    Article  Google Scholar 

  30. Noronha LJ, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. In: Pinsky MR, et al., editors. Applied physiology in intensive care medicine 2: physiological reviews and editorials. Berlin/Heidelberg: Springer Berlin Heidelberg; 2012. p. 71–83. https://doi.org/10.1007/978-3-642-28233-1_8.

    Chapter  Google Scholar 

  31. Permata Sari A, et al. Admission hypomagnesemia as a mortality predictor in medical critically ill patients. Crit Care. 2014;18(Suppl 1):P431. Available at http://ccforum.biomedcentral.com/articles/10.1186/cc13621

    Article  Google Scholar 

  32. Petrino R, Marino R. Fluids and electrolytes. In: Tintinalli JE, et al., editors. Tintinalli’s emergency medicine: a comprehensive study guide. 8th ed. New York: McGraw-Hill Education; 2016.

    Google Scholar 

  33. Reddi AS. Disorders of calcium: hypocalcemia. In: Fluid, electrolyte and acid-base disorders. New York: Springer New York; 2014a. p. 201–13.

    Chapter  Google Scholar 

  34. Reddi AS. Disorders of magnesium: hypermagnesemia. In: Fluid, electrolyte and acid-base disorders. New York: Springer New York; 2014b. p. 285–8.

    Chapter  Google Scholar 

  35. Reddi AS. Disorders of magnesium: hypomagnesemia. In: Fluid, electrolyte and acid-base disorders. New York: Springer New York; 2014c. p. 271–83.

    Chapter  Google Scholar 

  36. Rodríguez-Ortiz ME, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29(2): 282–9.

    Article  Google Scholar 

  37. Romani AMP. Magnesium in health and disease. In: Sigel A, Sigel H, Sigel RKO, editors. Interrelations between essential metal ions and human diseases. Dordrecht: Springer Netherlands; 2013. p. 49–79. https://doi.org/10.1007/978-94-007-7500-8_3.

    Chapter  Google Scholar 

  38. Rosner MH, Capasso G, Perazella MA. Acute kidney injury and electrolyte disorders in the critically ill patient with cancer. Curr Opin Crit Care. 2017; 23(6):475–83.

    Article  Google Scholar 

  39. Rubeiz GJ, et al. Association of hypomagnesemia and mortality in acutely ill medical patients. Crit Care Med. 1993;21(2):203–9. Available at http://www.ncbi.nlm.nih.gov/pubmed/8428470

    Article  CAS  Google Scholar 

  40. Salahudeen AK, et al. Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin J Am Soc Nephrol. 2013;8(3):347–54. Available at http://cjasn.asnjournals.org/cgi/doi/10.2215/CJN.03530412

    Article  Google Scholar 

  41. Saleem AF, Haque A. On admission hypomagnesemia in critically ill children: risk factors and outcome. Indian J Pediatr. 2009;76(12):1227–30.

    Article  Google Scholar 

  42. Sculier C, Gaspard N. Electrolyte disturbances and critical care seizures. In: Seizures in critical care. Cham: Springer International Publishing; 2017. p. 291–310.

    Chapter  Google Scholar 

  43. Singh AK. Hypermagnesemia. In: Decision making in medicine. Mosby; 2010a. p. 390–1. https://doi.org/10.1016/B978-0-323-04107-2.50137-X.

  44. Singh AK. Hypomagnesemia. In: Decision making in medicine. Mosby; 2010b. p. 388–9. https://doi.org/10.1016/B978-0-323-04107-2.50136-8.

  45. Soliman HM, et al. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31(4):1082–7. Available at http://www.ncbi.nlm.nih.gov/pubmed/12682476. Accessed 24 June 2018.

    Article  CAS  Google Scholar 

  46. Tangvoraphonkchai K, Davenport A. Magnesium and cardiovascular disease. Adv Chronic Kidney Dis. 2018;25(3):251–60.

    Article  Google Scholar 

  47. Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord. 2003;4(2): 195–206.

    Article  Google Scholar 

  48. Topf JM, Murray P. Hypermagnesemia. In: Lang F, editor. Encyclopedia of molecular mechanisms of disease. Berlin/Heidelberg: Springer Berlin Heidelberg; 2009. p. 907–8. https://doi.org/10.1007/978-3-540-29676-8_848.

    Chapter  Google Scholar 

  49. Ulm MA, et al. Hypomagnesemia is prevalent in patients undergoing gynecologic surgery by a gynecologic oncologist. Int J Gynecol Cancer. 2016;26(7): 1320–6. Available at http://www.ncbi.nlm.nih.gov/pubmed/27643653

    Article  Google Scholar 

  50. Waldman M, Kobrin S. Chapter 8. Disorders of magnesium balance: hypomagnesemia & hypermagnesemia. In: Lerma EV, Berns JS, Nissenson AR, editors. CURRENT diagnosis & treatment: nephrology & hypertension. New York: The McGraw-Hill Companies; 2009.

    Google Scholar 

  51. Whang R, Ryder KW. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA. 1990;263(22):3063–4. Available at http://www.ncbi.nlm.nih.gov/pubmed/2342219

    Article  CAS  Google Scholar 

  52. Wibe E, et al. Tumor lysis syndrome. A life-threatening complication during cytostatic treatment of chemosensitive types of cancer. Tidsskr Nor Laegeforen. 1991;111(19):2435–7. Available at http://www.ncbi.nlm.nih.gov/pubmed/1926084

    CAS  PubMed  Google Scholar 

  53. Wyskida K, et al. Daily magnesium intake and hypermagnesemia in hemodialysis patients with chronic kidney disease. J Ren Nutr. 2012;22(1):19–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Racedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Quintero, A., Racedo, J., Negrete, H. (2019). Electrolytic Abnormalities Related to Magnesium in Critically Ill Cancer Patients. In: Nates, J., Price, K. (eds) Oncologic Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-74698-2_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74698-2_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74698-2

  • Online ISBN: 978-3-319-74698-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics