
Constructing and Interrogating Actor
Histories

Tony Clark, Vinay Kulkarni, Souvik Barat and Balbir Barn

Abstract Complex systems, such as organizations, can be represented as exe-
cutable simulation models using actor-based languages. Decision-making can be
supported by system simulation so that different configurations provide a basis for
what-if analysis. Actor-based models are expressed in terms of large numbers of
concurrent actors that communicate using asynchronous messages leading to
complex non-deterministic behaviour. This chapter addresses the problem of ana-
lyzing the results of model executions and proposes a general approach that can be
added to any actor-based system. The approach uses a logic programming language
with temporal extensions to query execution traces. The approach has been
implemented and is shown to support a representative system model.

1 Introduction

Organizations and systems can be simulated using Multi-Agent Systems [1–3]. This
approach builds a model of an organisation in terms of independent goal-directed
agents that concurrently engage in tasks, both independently and collaboratively.
Collections of such agents form an executable model that produces results.
Fishwick [4] notes the key features of computer simulation to be modelling, exe-
cution and analysis of output. An important reason for using agents for simulation is

T. Clark (&)
Sheffield Hallam University, Sheffield, UK
e-mail: t.clark@shu.ac.uk

V. Kulkarni � S. Barat
Tata Consultancy Services Research, Pune, India
e-mail: vinay.vkulkarni@tcs.com

S. Barat
e-mail: souvik.barat@tcs.com

B. Barn
Middlesex University, London, UK
e-mail: b.barn@mdx.ac.uk

© Springer International Publishing AG 2018
R. Valencia-García et al. (eds.), Exploring Intelligent Decision Support Systems,
Studies in Computational Intelligence 764,
https://doi.org/10.1007/978-3-319-74002-7_2

27



that the systems of interest are complex, for example because they involve
socio-technical features [5]. As noted in [6]: humans use patterns to order the world
and make sense of things in complex situations, and it follows that pattern-based
analysis may be used to analyze an agent-based simulation model. This chapter
addresses the problem of how to create and analyze agent-based simulations.

Our work on simulation for decision support [7–12] has led to the design of a
simulation workbench built around an actor language [13] called ESL [14]. The
language ESL is used to construct agent-based simulation models that are run to
produce histories. Each history contains a sequence of events produced by the
behaviour of the actors in the simulation and thereby captures their emergent
behaviour. A history is a temporal database of facts describing the states of, and
communications between, actors in the simulation.

The research question that we seek to investigate is: what general-purpose
mechanism can be devised to generate actor histories and then analyze them using
temporal queries? Where possible the mechanism should be applicable to existing
actor-based technologies and use standard query languages with minimal exten-
sions. We take a design-based approach to this research by taking an existing
technology and implementing extensions that support the production and analysis
of actor-histories.

The current state of the practice of analysis of simulation results is predomi-
nantly based on the visualization and human interpretation. We propose a pro-
grammatic approach to the construction and interrogation of simulation histories.
History construction is achieved by extending the standard operational actor model
of computation [15, 16] in order to capture temporal events during simulation
execution. History interrogation is achieved by extending standard logic pro-
gramming with temporal operators that are defined in terms of a supplied history
containing time-stamped events.

Our contribution is a pair of general-purpose languages for the construction and
subsequent interrogation of agent-based execution histories. In both cases con-
ventional computational models are extended with novel mechanisms for histories:
an interpreter for actor languages is extended with primitives for history production
and a Prolog meta-interpreter is extended to support history interrogation.

The proposed approach is evaluated in terms of its completeness, viability and
validity. Completeness follows from the universality of the actor model of com-
putation, from our claim that our actor interpreter generates all key computational
events, and from our claim that the query language can express all queries of
interest. Viability is demonstrated by our implementation of a simulation work-
bench and validity is demonstrated by showing how the implementation supports
the construction and interrogation of a representative simulation. The conclusion
discusses threats to validity, how we plan to address them, and outlines next steps.

28 T. Clark et al.



2 Related Work

The use of Multi-Agent Systems (MAS) for system simulation has been explored
by a number of researchers, for example in [17–20], where agent simulation models
range from collection of numerical equations to sophisticated behaviours encoded
using a BDI-based approach. Researchers have developed approaches for the def-
inition and analysis of simulation properties. In [17], Bosse et al. present a generic
language for the formal specification and analysis of dynamic properties of MAS
that supports the specification of both qualitative and quantitative features, and
therefore subsumes specification languages based on differential equations.
However, this is not an executable language like that presented in this chapter. It
has been specialized for simulation and has produced the LEADSTO language [21]
that is a declarative order-sorted temporal language where time is described by real
numbers and where properties are modelled as direct temporal dependencies
between properties in successive states. Though quite useful in specifying simu-
lations of dynamic systems, it does not provide any help in querying the resultant
behaviour. Bosse et al. further propose a multi-agent model for mutual absorption
of emotions to investigate emotion as a collective property of a group using sim-
ulation [22]. It provides mathematical machinery to validate a pre-defined property
over simulation trace. However, there is no support for temporal logic operators.

Sukthankar and Sycara propose an algorithm to recognize team behaviour from
spacio-temporal traces of individual agent behaviours using dynamic programming
techniques [23], but do not address general behavioural properties arising from
simulations. Vasconcelos et al. present mechanisms based on first-order unification
and constraint solving techniques for the detection and resolution of normative
conflicts concerning adoption and removal of permissions, obligations and prohi-
bitions in societies of agents [24].

The tool described in [25] produces static diagrams of agent communication
topologies using a society tool. The authors support off-line video-style replay
facilities with forward and backward video modes as a powerful debugging aid.
However there is no programmatic mechanism for interrogating the histories.

Temporal logics have been used to specify the behaviour of MAS [26] and to
analyze the specification for properties using theorem proving or model checking.
Our approach uses a similar collection of temporal operators, however we are
applying the behaviour specifications post hoc in order to investigate whether a
given behaviour took place, rather than to express required behaviour or to analyze
properties such as consistency etc.

The need to analyze agent-based simulations is related to the field of agent-based
system testing. As noted in [27] attempting to obtain assurance of a system’s
correctness by testing the system as a whole is not feasible and there is, at present,
no practical way of assuring that they will behave appropriately in all possible
situations. Our approach is intended to be a pragmatic partial solution that is used
selectively in collaboration with a domain expert. Queries can be used to test

Constructing and Interrogating Actor Histories 29



whether properties exist in particular histories, and could help scope the use of more
formal static methods.

Using temporal operators to construct queries over databases is a standard
approach. Queries can be encoded in logic [28] or in SQL extensions [29], although
as noted in [30]: Much of real-life data is temporal in nature, and there is an
increasing application demand for temporal models and operations in databases.
Nevertheless, SQL:2011 has only recently overcome a decade-long standstill on
standardizing temporal features. As a result, few database systems provide any
temporal support, and even those only have limited expressiveness and poor per-
formance. A logic provides increased expressive power over an SQL-like language
at the cost of requiring a theorem prover or a model checker with the associated
scalability issues. Our approach, using logic-programming, aims to be more
expressive than SQL whilst addressing scalability.

Managing temporal data is becoming increasingly important for many applica-
tions [31, 32]. Our work is related to process mining from the event logs that are
created by enterprise systems [33] where queries can be formulated in terms of a
temporal logic and applied to data produced by monitoring real business systems.
Other researchers have proposed adding temporal operators to query languages in
order to process knowledge bases [34]. We have extended these approaches in the
context of simulation histories by showing how to encode them in an operational
query language.

The nature of agent-based systems leads to high levels of concurrency with an
associated challenge regarding system analysis when behaviour is not as expected.
As reported in [35]: in order to locate the cause of such behaviour, it is essential to
explain how and why it is generated [36]. If histories are linked to source code then
queries can be used as part of an interactive debugger, extending the approach
described in [35]. In conclusion, there have been a number of approaches in the
literature that analyze actor-based systems, some of them are based on histories, but
none provide the expressive power of the language defined in this chapter.
Furthermore, we show how any actor-based language can be extended to produce
histories that are suitable for interrogation by queries written in an extended logic
programming language.

3 Actors and Histories

An agent-based simulation model consists of agents, each of which has local
knowledge, goals and behaviour. Such a model can be operationalized in terms of
the actor model of computation whereby each actor has an independent thread of
control, has a private state and communicates with other actors via asynchronous
messages as shown in Fig. 1. For the purposes of this chapter we conflate the terms
agent and actor.

30 T. Clark et al.



The key features of the actor computation model are [37–39]: (1) the creation of
new actors; (2) sending asynchronous messages; (3) updating a local variable;
(4) changing behaviour. The latter allows an actor to adapt by changing the way in
which it responds to messages. The state of an actor can be represented in terms of
its local variable storage (including references to other actors), its thread of exe-
cution, and its message queue. Execution proceeds independently at each actor by
selecting the next message on the queue, using the message to index a suitable
handler in the actor’s behaviour description, and proceeding to execute the handler
on the actor’s thread. When the execution terminates, it repeats the process by
selecting the next message.

Consider a situation where a customer processes jobs on a machine. The cus-
tomer submits a job request to a machine that may subsequently result in a noti-
fication that the job has been completed, or that the machine is busy and cannot
accept the job. After accepting a job, a machine may break down causing a delay.
A simple actor model for this situation is shown in Fig. 2a where the types
Customer and Machine and the behaviours workingMachine and
brokenMachine. A type defines an interface that may be implemented by many
different behaviours, and a behaviour is equivalent to a Java class that can be
instantiated to produce actors. The behaviour of a machine is shown in Fig. 2b and
is distributed between the two behaviour definitions: a machine initially has the
behaviour workingMachine and is Idle. A working machine becomes Busy
when it receives a job request, and may change behaviour to become a
brokenMachine. When broken, the Machine interface is implemented differ-
ently and may become working after a period of repair.

Figure 2c shows an execution history corresponding to the machine and cus-
tomer actors. The simulation is driven by messages Time(n) which are generated
at regular intervals, and the history contains the events that are produced at each
time interval. The event types are: New(b,i) where i is a unique actor identifier,
and b is the corresponding behaviour; Update(i,n,v) where i is an actor
identifier, n is the name of a state variable, and v is a new value for the variable;
Send(s,t,m) records a message m being sent from actor s to target t; Consume
(i,m) removes message m from the head of the message queue for actor i;
Become(i,b) records the change of behaviour of actor i to have behaviour b.

The machine example demonstrates typical features of actor-based simulation:
time and stochastic behaviour. All actors receive Time(n) messages that drive the

Fig. 1 Actor model of
computation [39]

Constructing and Interrogating Actor Histories 31



simulation and therefore events can be associated with a specific time, thereby
providing an event ordering within a specific history. The event that causes a
machine breakdown is dependent on a given probability: break, and therefore
multiple runs of the same actor model can produce different histories corresponding
to emergent behaviour. Analysis of a history is based on detecting patterns in the
sequence of events.

4 Constructing Histories

The actor model of computation has been implemented in a significant number of
languages and libraries [40]. The implementations differ in terms of syntax and in
the integration with other language features, however the key aspects of the actor
model are common to all. This section shows how any of these implementations can
be extended to produce histories by defining an actor interpreter that abstracts away
all non-essential features and that has been minimally extended to produce histories.
The interpreter is defined using a functional subset of ESL, which supports basic
data types, simple algebraic data, lists and sets. The latter is used in conjunction

Fig. 2 Features of actor behaviour

32 T. Clark et al.



with pattern matching to support non-deterministic set element selection, which is
key to the fairness property of actor systems.

Figure 3 shows a model of actor program states: State(a,db,t) is the state
of an executing actor system where a is a set of actors, db is a history database, and
t is the current time. We are interested in specifying how db is constructed through
the conventional operational semantics of actors. This is achieved by defining a
single-step operational semantics: s2=step(s1) where system state s1 performs
an execution step in order to become state s2. The complete execution of a system
can be constructed by repeated application of step.

It is useful in simulations to be able to refer to global time via a clock. This can
be used to schedule future computation or to allow actors to perform joint actions.
To support the notion of global time, each actor in our operational model receives a
regular Time message where each global time unit is measured in machine
instructions. This mechanism seems to be fair and, although is not related to
real-time, provides a basis for time that is useful in a simulation. To support this,
each actor has an instruction count that, when reached, halts the actor. When all
actors have been halted, global time is increased, and a message is sent to all actors.

An actor is represented as Machine(i,cs,b,q,t) where i is a unique
identifier, cs are machine instructions that are currently executing on the actor’s
thread of control, b is the actor’s behaviour, q is a message queue, and t is an
integer that represents the number of instructions left to this actor within this global
time unit. The function step is defined:

Fig. 3 An abstract model of actor programs as an ESL data type

Constructing and Interrogating Actor Histories 33



where line 6 detects the situation where all actors have exhausted their execution
resources for the current time unit and line 17 non-deterministically selects an actor
m such that newState performs an execution step for m if that is possible.

Figure 4 defines function newState that performs a single step of execution
for an actor with respect to the system. It is defined by case analysis on the actor’s
control instructions. In the case that the actor has exhausted its control and has no
further messages (line 10) it can do nothing. If the control is exhausted and there is
a pending message (line 11) then the control is updated to become the new message
handler. Otherwise, lines 13–34 show how each command causes the history
database to be extended with a fact that is labelled with the current global time.
The operation newActor::(Str)->(Behaviour,Id) is used to create a
new actor when supplied with the name of a behaviour. It is not defined in Fig. 4
but assumes a global collection of behaviour definitions and allocates a new actor
identifier each time it is called.

A history database db is created from an initial configuration of actors a by
repeated application of step until a terminal state is achieved such that all actors
are exhausted and have no pending messages, db=getDB(run(a)):

34 T. Clark et al.



Fig. 4 Semantics of ESL

Constructing and Interrogating Actor Histories 35



Figure 5 shows a concrete ESL implementation of the machine from Fig. 2. The
abstract implementation, using the language defined in Fig. 3 is as follows:

Fig. 5 ESL implementation of machine

36 T. Clark et al.



This section has described an abstract operational model for the construction of
actor histories. A history is a collection of facts of the form Fact(t,f) where t is
a timestamp and f is a term representing an actor execution step. The semantics is
defined as an interpreter for an abstract actor language that can be used as the basis
of designing a similar modification to a wide range of concrete languages and the
relationship of the abstract language to ESL has been demonstrated. The next
section shows how the histories produced by the interpreter can be interrogated
using queries that are expressed using logic programming.

5 Interrogation of Histories

Simulations consist of many autonomous agents with independent behaviour and
motivation. Consequently, the system behaviour is difficult to predict. Furthermore,
the highly concurrent nature of the actor model of computation makes the simu-
lation difficult to instrument in order to detect situations of interest. Therefore, we
propose the construction of simulation histories as a suitable approach to simulation
interrogation. Given such a history we would like to construct queries that deter-
mine whether particular relationships exist, where the relationships are defined in
terms of the key features of actor computation. Logic programming, as exemplified
by Prolog, would seem to be an ideal candidate for the construction of such queries,
however standard Prolog does not provide intrinsic support for expressing the
temporal features of such histories. We define a typed logic programming language
and define an extended Prolog meta-interpreter with history interrogation features.

5.1 Typed Logic Programming

A basis for the history query language is a statically typed version of Prolog:

Constructing and Interrogating Actor Histories 37



The examples above are standard Prolog rules that have been elaborated with
static type information that is checked by the ESL Workbench before execution.
The rules length and member use parametric polymorphism over the type T of
elements in a list. The rule lookup is parametric with respect to the type of the
bindings in the environment list.

Standard Prolog, as shown above, does not provide support for history inter-
rogation. Histories are temporally ordered facts, so history interrogation will
involve queries that need to express ordering relationships between, what are
otherwise, standard Prolog facts. This suggests that adding temporal operators to
Prolog [41] and integrating the history facts with a Prolog rule database will provide
a suitable basis for interrogation. During execution, a query is at a particular time
unit in the history and can match against any of the facts at that time in addition to
matching against rules in the rule-base. Operators can be used to move forwards
and backwards in time to adjust the portion of the history that is used to establish
facts. Quantification over the time variable to allow queries such as: fact f exists at
some point in the history from this point, and fact f exists at all points in the history
before this point to provide a suitably expressive basis for defining history inter-
rogations with a logic programming framework. The rest of this section defines
such a mechanism.

5.2 Meta Representation

This section defines a data representation for logic-programming rules where the
rule-body elements support temporal operators over histories. The data type Body
describes the elements that can occur in a rule body as depicted in Fig. 6. The terms
Call and Is represent standard Prolog body elements; all other elements are

38 T. Clark et al.



extensions to standard Prolog. The extensions all relate to current time that is used
to index the time-stamp associated with the facts in the history:

Elements Start and End are satisfied when the current time is 0 and the end of
the history respectively. An element Next(es) is satisfied when the elements es
are satisfied at now +1, similarly Prev(es) at now -1. An element Always
(es) is satisfied when the elements es are satisfied at all times from now, similarly
Past(es) all times before now. Element Eventually(es) is satisfied when
es are satisfied at some time in the future.

5.3 Meta Interpreter

Figure 7 defines a meta-interpreter for the history query language. Given a query q
(v1,…,vn), a program prog, a database db and a history end time t, the query
is satisfied when call(0,t,db,′q′,[v1,…,vn],prog) is satisfied with
respect to the definitions given in the program.

The meta-interpreter is based on a standard operational semantics for Prolog that
is extended with features to process the supplied database (the definition of
Forall is omitted, but is consistent with standard Prolog). The rule call is used
to process a body element of the form Call(n,vs) where n is the name of a fact
and vs are the arguments. Conventional Prolog processes such a call using the
definition of call defined on lines 8–13 where a rule named n with an appropriate

Fig. 6 Data type definition

Constructing and Interrogating Actor Histories 39



arity is found in the program and is supplied with the argument values using
matchs.

Figure 7 extends conventional Prolog rule calling by allowing the fact to be
present in the history at the current time (line 8). Therefore, the facts in the history
become added to the facts that can be conventionally deduced using the rules. The
semantics of the additional types of body elements are processed by the try rule
(lines 41–63) by modifying the value of the current time appropriately, For
example, the rule for Next (lines 48–49) fails if the end of the history has been
reached, otherwise it attempts to satisfy the elements es after incrementing the
current time by 1.

An example rule is customers where customers(cs) is satisfied when cs
is a list of all the customer actor identifiers in the history:

Line 2 defines that there can be no customers if we are at the end of the history.
Lines 3–5 define how to extract the customer identifiers from this point in the
history: line 4 uses forall to match all database facts of the form actor(a,′
customer′,_) where this fact has been added to the database when a new
customer actor is created. Then, next is used to advance the time so that cs″ are
all the customer actors from this point onwards.

6 Evaluation

The approach has been implemented as part of the ESL Workbench. ESL is an actor
language that has been designed to support simulations. It has static types and
compiles to run on a virtual machine (VM) implemented in Java. We have extended
the ESL VM with features to produce histories and then integrated a query lan-
guage, implemented as a Prolog VM, extended with features to process histories.
This section evaluates the validity of the approach by applying it to a case study.
ESL has been used to construct a number of simulations including an IT service
provider, a research institute, and the effect of the 2016 Indian Demonetisation
initiative. In this chapter we use a case study that is based on existing work on
agent-based organisation simulations [42] involving a shop where customers
browse for items, seek help from assistants, and queue to buy chosen items.
Customers become unhappy if they wait too long for help or in a queue, and
unhappy customers leave the shop.

The shop would like to simulate customer and assistant behavior in order to
minimize unhappy customers. The case study will be used to demonstrate the

40 T. Clark et al.



Fig. 7 Query language meta
interpreter

Constructing and Interrogating Actor Histories 41



construction of an agent model that produces a history and the subsequent inter-
rogation via a query. The query is chosen to demonstrate the utility of logic pro-
gramming using the ESL query language and will also be analyzed in terms of its
efficiency based on the implementation described in the previous section.

The structure of the shop simulation is shown in Fig. 8. and its behaviour is
shown in Fig. 9 a snapshot of the output from ESL is shown in Fig. 10 where 10
customers are mostly unsatisfied (a) and mostly satisfied (b).

The simulation is driven by Time messages and all actors implement a Time
transition for all states; the empty transitions arising from Time are omitted. Time
is used in Fig. 9g to show how customers waiting at a till can time out and
ultimately leave the shop. The value supplied to a transaction is tLim which
determines how long a customer is prepared to wait without a sale being concluded.

Customers who leave the shop because they have waited too long to be serviced
at a till are deemed to be unhappy. The shop is interested in how to organize its
assistants, sales and floor-walking strategies in order to minimize unhappy cus-
tomers. Figure 10 shows the ESL Workbench output from two different simulation
configurations. Figure 10a shows the result of 10 customers, 5 tills and 3 sales
assistants where roughly 75% of the customers are left unhappy. The number of
assistants has been increased to 5 in Fig. 10b where the situation is reversed. Note
that the simulation has many random elements and therefore each run is different,
but the two outputs characterize the relative differences.

Fig. 8 Structure of shop actors

42 T. Clark et al.



Figure 11 shows a simple ESL query that interrogates the history produced by
the shop simulation where raid(n,cs) is satisfied when cs is a list of n cus-
tomer identifiers where the customers are all receiving help from sales assistants at
the same time. Line 3 queries the history for all the customers and line 4 constructs
a subset of all the customers. The rule subset is defined to allow backtracking
through all the possible subsets, so line 5 will filter the subsets to select just those of
the required length. The rules findAllHelped and allHelped query the history
to ensure that the selected customers are in a GettingHelp state at the same time.
The ESL implementation of the shop simulation can be downloaded as part of the
open-source ESL system1.

Fig. 9 Actor behaviours

1https://github.com/TonyClark/ESL.

Constructing and Interrogating Actor Histories 43

https://github.com/TonyClark/ESL


7 Conclusion

In this chapter we have sought to address the challenge of creating and analyzing
actor-histories. We have shown how to extend a general actor-based language to
produce histories of facts and how to extend a Prolog engine with temporal oper-
ators that can query the histories to establish whether patterns of facts exist. The
proposal has been evaluated by showing that it can support a typical simulation, and
that it can be implemented. Whilst other approaches to agent-based systems have
used temporal operators to specify behaviour, and such operators have been used to

Fig. 10 Shop simulation output

Fig. 11 Raids: finding a pattern in a history

44 T. Clark et al.



interrogate system traces, use of this approach to analyze agent-based simulations is
novel.

Whilst we have evaluated the approach in several different ways, the following
issues and threats to validity remain: (Threat-1) The case study that has been used to
evaluate the approach is taken from the literature and we can claim it to be rep-
resentative of a class of simulations. Further work is needed to establish whether
this case study is representative of a sufficiently broad class. (Threat-2) The his-
tories that are produced by ESL-based simulations are typically intended to reflect
some aspects of a real-world situation. Although the query approach described in
this chapter does not rely on a valid history, in practice there must be some way to
validate the simulation output. One possibility is to model an accepted theory, for
example from social science or organisational management, and to show that the
simulation model and its results is consistent with the theory. We intend to
investigate this approach in the context of ESL simulations. (Threat-3) The effi-
ciency of the approach has been established in the context of the example. This
relies on knowledge of query semantics in order to ensure they are executed effi-
ciently. It remains to be seen whether this is reasonable and whether efficiency can
be improved. (Threat-4) Histories can be very large for long simulation runs. We
have defined a compact implementation format, but further work is required to
ensure that histories are no larger than is required. One option is to pre-process
histories based on partial knowledge of query structures.

The approach described in this chapter is similar to existing approaches that
analyze system traces, however we go further by defining precisely how the exe-
cution histories are produced and give a complete specification of the query lan-
guage that can be used to analyze them. As such the work is novel and solves a
problem that arises with actor-based systems where the behavior is both complex
and non-deterministic. It remains to be seen whether the results meet users needs in
terms of their ability to construct appropriate queries. One option is to be able to
display and compare the results graphically, and this is an area for further work.

References

1. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multiagent systems. In: Proceedings. International Conference on Multi Agent Systems,
1998., pp. 128–135. IEEE (1998)

2. Morgan, G.P., Carley, K.M.: An agent-based framework for active multi-level modeling of
organizations. In: International Conference on Social Computing, Behavioral-Cultural
Modeling and Prediction and Behavior Representation in Modeling and Simulation
SBP-BRiMS 2016. Springer, Berlin (2016)

3. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous
software agents and humans. Auton. Agent. Multi-Agent Syst. 7(1–2), 71–100 (2003)

Constructing and Interrogating Actor Histories 45



4. Fishwick, P.A.: Computer simulation: growth through extension. Trans. Soc. Comput. Simul.
14(1), 13–24 (1997)

5. McDermott, T., Rouse, W., Goodman, S., Loper, M.: Multi-level modeling of complex
sociotechnical systems. Proc. Comput. Sci. 16, 1132–1141 (2013)

6. Clark, T., Kulkarni, V., Barat, S., Barn, B.: Sense-making in a complex and complicated
world. IBM Syst. J. 42(3), 462–483 (2003)

7. Barat, S., Kulkarni, V., Clark, T., Barn, B.: Enterprise modeling as a decision making aid: a
systematic mapping study. In: The Practice of Enterprise Modeling—9th IFIP WG 8.1.
Working Conference, PoEM 2016, Skövde, Sweden, pp. 289–298

8. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A simulation-based aid for organisational
decisionmaking. In: 11th International Joint Conference on Software Technologies (ICSOFT
2016)—Volume 2: ICSOFT-PT, Lisbon, Portugal, July 24–26, 2016, pp. 109–116

9. Barat, S., Kulkarni, V., Clark, T., Barn, B.: A model based realisation of actor model to
conceptualise an aid for complex dynamic decision-making. In: Proceedings of the 5th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2017, Porto, Portugal, February 19–21, 2017, pp. 605–616

10. Clark, T., Kulkarni, V., Barat, S., Barn, B.: ESL: an actor-based platform for developing
emergent behaviour organisation simulations. Advances in Practical Applications of
Cyber-Physical Multi-Agent Systems: The PAAMS Collection—15th International
Conference, PAAMS 2017, Porto, Portugal, June 21–23, 2017

11. Kulkarni, V., Barat, S., Clark, T., Barn, B.: A wide-spectrum approach to modelling and
analysis of organisation for machine-assisted decision-making. In: Enterprise and
Organizational Modeling and Simulation—11th International Workshop, EOMAS 2015,
Held at CAiSE 2015, Stockholm, Sweden, June 8–9, 2015

12. Kulkarni, V., Barat, S., Clark, T., Barn, B.S.: Toward overcoming accidental complexity in
organisational decision-making. In: 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MoDELS 2015, Ottawa, ON, Canada,
September 30–October 2, 2015, pp. 368–377 (2015)

13. Ricci, A., Agha, G., Bordini, R.H., Marron, A.: Special issue on programming based on
actors, agents and decentralized control. Sci. Comput. Program. 98, 117–119 (2015)

14. Clark, T., Kulkarni, V., Barat, S., Barn, B.: Actor monitors for adaptive behaviour.
In: Proceedings of the 10th Innovations in Software Engineering Conference, ISEC 2017,
Jaipur, India, February 5–7, 2017, pp. 85–95

15. De Koster, J., Van Cutsem, T., De Meuter, W.: 43 years of actors: a taxonomy of actor
models and their key properties. In: Proceedings of the 6th International Workshop on
Programming Based on Actors, Agents, and Decentralized Control, pp. 31–40. ACM (2016)

16. Hewitt, C.: Actor model of computation: scalable robust information systems. arXiv preprint
arXiv:1008.1459 (2010)

17. Bosse, T., Jonker, C.M., Van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and
verification of dynamics in cognitive agent models. In: IAT, pp. 247–254. Citeseer (2006)

18. Caillou, P., Gaudou, B., Grignard, A., Truong, C.Q., Taillandier, P.: A simple-to-use BDI
architecture for agent-based modeling and simulation. In: The Eleventh Conference of the
European Social Simulation Association (ESSA 2015) (2015)

19. Galland, S., Knapen, L., Gaud, N., Janssens, D., Lamotte, O., Koukam, A., Wets, G., et al.:
Multi-agent simulation of individual mobility behavior in carpooling. Transp. Res. Part C:
Emerg. Technol. 45, 83–98 (2014)

20. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation
platforms. Auton. Agent. Multi-Agent Syst. 30(6), 1050–1071 (2016)

21. Bosse, T., Jonker, C.M., Van Der Meij, L., Treur, J.: LEADSTO: a language and environment
for analysis of dynamics by simulation. In: German Conference on Multiagent System
Technologies, pp. 165–178. Springer, Berlin (2005)

46 T. Clark et al.



22. Bosse, T., Duell, R., Memon, Z.A., Treur, J., Van DerWal, C.N.: Multi-agent model for
mutual absorption of emotions. ECMS 2009, 212–218 (2009)

23. Sukthankar, G., Sycara, K.: Simultaneous team assignment and behavior recognition from
spatio-temporal agent traces. AAAI 6, 716–721 (2006)

24. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in
multiagent systems. Auton. Agents Multi-Agent Syst. 19(2), 124–152 (2009)

25. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging distributed
multi-agent systems. In: Proceedings of the IRD Annual Conference on Autonomous Agents,
AGENTS ’99, pages 326–333, New York, NY, USA, 1999. ACM

26. Bulling, N., Van der Hoek, W.: Preface: special issue on logical aspects of multi-agent
systems. Stud. Log. (Special Issue), 2016 (2016)

27. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. J. Artif. Intell. Res.
(JAIR) 51, 71–131 (2014)

28. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the description logic
DL-lite. In: International Symposium on Frontiers of Combining Systems, pp. 165–180.
Springer, Berlin (2013)

29. Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.:
Temporal query processing in teradata. In: Proceedings of the 16th International Conference
on Extending Database Technology, pp. 573–578. ACM (2013)

30. Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F.: Comprehensive and
interactive temporal query processing with sap hana. Proc. VLDB Endow. 6(12), 1210–1213
(2013)

31. Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F., May, N.:
Timeline index: a unified data structure for processing queries on temporal data in
SAP HANA. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pp. 1173–1184. ACM (2013)

32. Kruse, R., Steinbrecher, M., Moewes, C.: Temporal pattern mining. In: 2010 International
Conference on Signals and Electronic Systems (ICSES), pp. 3–8. IEEE (2010)

33. Räim, M., Di Ciccio, C., Maggi, F.M., Mecella, M., Mendling, J.: Log-based understanding
of business processes through temporal logic query checking. In: OTM Conferences,
pp. 75–92. Springer, Berlin (2014)

34. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over
knowledge bases. In: Web Semantics: Science, Services and Agents on the World Wide Web,
50–70 (2015)

35. Koeman, V.J., Hindriks, K.V.: Designing a source-level debugger for cognitive agent
programs. In: International Conference on Principles and Practice of Multi-Agent Systems,
pp. 335–350. Springer, Berlin (2015)

36. Hindriks, K.V.: Debugging is explaining. In: International Conference on Principles and
Practice of Multi-Agent Systems, pp. 31–45. Springer, Berlin (2012)

37. Agha, G.A.: Actors: a model of concurrent computation in distributed systems. Tech. rep.,
DTIC Document (1985)

38. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation.
J. Funct. Program. 7(01), 1–72 (1997)

39. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a comparative
analysis. In: Proceedings of the 7th International Conference on Principles and Practice of
Programming in Java, pp. 11–20. ACM (2009)

40. Imam, S., Sarkar, V.: Savina-an actor benchmark suite. In: 4th International Workshop on
Programming based on Actors, Agents, and Decentralized Control, AGERE (2014)

41. Gaintzarain, J., Lucio, P.: Logical foundations for more expressive declarative temporal logic
programming languages. ACM Trans. Comput. Log. (TOCL) 14(4), 28 (2013)

42. Siebers, P., Aickelin, U.: A first approach on modelling staff proactiveness in retail simulation
models. J. Artif. Soc. Soc. Simul. 14(2) (2011). URL: http://jasss.soc.surrey.ac.uk/14/2/2.html

Constructing and Interrogating Actor Histories 47

http://jasss.soc.surrey.ac.uk/14/2/2.html

	2 Constructing and Interrogating Actor Histories
	Abstract
	1 Introduction
	2 Related Work
	3 Actors and Histories
	4 Constructing Histories
	5 Interrogation of Histories
	5.1 Typed Logic Programming
	5.2 Meta Representation
	5.3 Meta Interpreter

	6 Evaluation
	7 Conclusion
	References


