Skip to main content

Acoustic Approximation of the Governing Equations of Liquid Crystals Under Weak Thermomechanical and Electrostatic Perturbations

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 87))

Abstract

A simplified mathematical model of thermomechanical behavior of a liquid crystal in nematic phase under weak mechanical and thermal perturbations as a micropolar viscoelastic medium with rotating particles is constructed. This model is based on the assumption that potential energy of elastic deformation depends on four parameters—the change in volume, angle of relative rotation of particles, first invariant of curvature measure and entropy. The heat conduction process is described taking into account the anisotropy of a material due to the difference in coefficients of thermal conductivity along the axis of orientation of particles and in the transverse direction. Influence of electric field on the layer of a liquid crystal is modeled by means of the equations of electrostatics for an inhomogeneous anisotropic medium. In the plane formulation, the parallel computational algorithm is worked out on the basis of splitting method with respect to spatial variables, Godunov’s gap decay method, Ivanov’s method of constructing finite-difference schemes with controlled dissipation properties and method of straight lines for finding electric field. The algorithm is implemented using the CUDA technology for computer systems with graphics accelerators. Results of computations of wave motions demonstrating the efficiency of proposed method and algorithm are represented. It is shown that the effect of orientational thermoelasticity of a liquid crystal in the form of re-orientation of particles in an inhomogeneous temperature field can only be evident in the presence of tangential stresses at the boundary. The modes of resonance excitation in a liquid crystal at the eigenfrequency of rotational motion of particles are analyzed numerically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aero, E.L., Bulygin, A.N.: Equations of motion of nematic liquid-crystal media. J. Appl. Math. Mech. 35(5), 831–843 (1971). https://doi.org/10.1016/0021-8928(71)90081-5

  2. Aero, E.L., Bulygin, A.N.: Kinematics of nematic liquid crystals. Int. Appl. Mech. 8(3), 306–313 (1972). https://doi.org/10.1007/BF00887448

  3. Aero, E.L., Bulygin, A.N., Kuvshinskii, E.V.: Asymmetric hydromechanics. J. Appl. Math. Mech. 29(2), 333–346 (1965). https://doi.org/10.1016/0021-8928(65)90035-3

  4. Ahlers, G., Cannell, D.S., Berge, L.I., Sakurai, S.: Thermal conductivity of the nematic liquid crystal 4-n-pentil-4\(^{\prime }\)-cyanobiphenil. Phys. Rev. E 49(1), 545–553 (1994). https://doi.org/10.1103/PhysRevE.49.545

  5. de Andrade Lima, L.R.P., Rey, A.D.: Superposition and universality in the linear viscoelasticity of Leslie–Ericksen liquid crystals. J. Rheol. 48(5), 1067–1084 (2004). https://doi.org/10.1122/1.1773784

  6. Belyaev, B.A., Drokin, N.A., Shabanov, V.F., Shepov, V.N.: Dielectric anisotropy of 5CB liquid crystal in a decimeter wavelength range. Phys. Solid State 42(3), 577–579 (2000). https://doi.org/10.1134/1.1131251

  7. Blinov, L.M.: Structure and Properties of Liquid Crystals. Springer, Heidelberg, New York, Dordrecht, London (2011). https://doi.org/10.1007/978-90-481-8829-1

  8. Cosserat, E., Cosserat, F.: Théorie des corps déformables. In: Chwolson, O.D. (ed.) Traité Physique, pp. 953–1173. Librairie Scientifique A. Hermann et Fils, Paris (1909)

    Google Scholar 

  9. Demenev, E.I., Pozdnyakov, G.A., Trashkeev, S.I.: Nonlinear orientation interaction of nematic liquid crystal with thermal flow. Pisma v ZhTF 35(14), 76–83 (2009) (in Russian)

    Google Scholar 

  10. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5(1), 23–34 (1961). https://doi.org/10.1122/1.548883

  11. Eringen, A.C.: Theory of micropolar fluids. Indiana Univ. Math. J. 16(1), 1–18 (1967). https://doi.org/10.1512/iumj.1967.16.16001

  12. Eringen, A.C.: Micropolar theory of liquid crystals. In: Jonson, J.F., Porter, R.S. (eds.) Liquid Crystals and Ordered Fluids, vol. 3, pp. 443–474. Plenum Press, New York (1978)

    Chapter  Google Scholar 

  13. Farber, R.: CUDA Application Design and Development, 1st edn. Morgan Kaufmann/Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo (2011)

    Google Scholar 

  14. Frank, F.C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  15. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7(2), 345–392 (1954). https://doi.org/10.1002/cpa.3160070206

  16. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. International Series of Monographs on Physics, vol. 83. Clarendon Press, Oxford (1995)

    Google Scholar 

  17. Godunov, S.K., Mikhailova, T.Yu.: Representation of Rotation Group and Spherical Functions. Nauchnaya Kniga, Novosibirsk (1998) (in Russian)

    Google Scholar 

  18. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., Prokopov, G.P.: Numerical Solving Many-Dimensional Problems of Gas Dynamics. Nauka, Moscow (1976) (in Russian)

    Google Scholar 

  19. Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. Int. J. Eng. Sci. 43(5–6), 494–519 (2005). https://doi.org/10.1016/j.ijengsci.2004.08.016

  20. Ivanov, G.V., Volchkov, Yu.M, Bogulskii, I.O., Anisimov, S.A., Kurguzov, V.D.: Numerical Solution of Dynamic Elastic-Plastic Problems of Deformable Solids. Sib. Univ. Izd., Novosibirsk (2002) (in Russian)

    Google Scholar 

  21. Kalugin, A.G.: Mechanics of Anisotropic Liquids. Izd., CPI MMF MGU, Moscow (2005) (in Russian)

    Google Scholar 

  22. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach, 2nd edn. Morgan Kaufmann/Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, Singapore, Sydney, Tokyo (2013)

    Google Scholar 

  23. Kondaurov, V.I.: Non-linear equations of the dynamics of an elastic micropolar medium. J. Appl. Math. Mech. 48(3), 291–299 (1984). https://doi.org/10.1016/0021-8928(84)90135-7

  24. Kondaurov, V.I., Fortov, V.E.: Fundamentals of the Thermomechanics of a Condensed Medium. Izd., MFTI, Moscow (2002) (in Russian)

    Google Scholar 

  25. Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Yu.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Series of Monographs and Surveys in Pure and Applied Mathematics, vol. 118. Chapman & Hall/CRC, Boca Raton, London, New York, Washington (2001)

    Google Scholar 

  26. Lee, J.D., Eringen, A.C.: Wave propagation in nematic liquid crystals. J. Chem. Phys. 54(12), 5027–5034 (1971). https://doi.org/10.1063/1.1674793

  27. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968). https://doi.org/10.1007/BF00251810

  28. Lhuillier, D.: Micropolar fluids: from nematic liquid crystals to liquid-like granular media. In: Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua, Series of Advanced in Mechanics and Mathematics, vol. 21, pp. 47–54. Springer, Heidelberg, New York, Dordrecht, London (2010). https://doi.org/10.1007/978-1-4419-5695-8

  29. Lhuillier, D., Rey, A.D.: Nematic liquid crystals and ordered micropolar fluids. J. Non-Newtonian Fluid Mech. 120(1–3), 169–174 (2004). https://doi.org/10.1016/j.jnnfm.2004.01.018

  30. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford Mathematical Monographs. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  31. Maugin, G.A., Drouot, R.: Internal variables and the thermodynamics of macromolecule solutions. Int. J. Eng. Sci. 21(7), 705–724 (1983). https://doi.org/10.1016/0020-7225(83)90056-3

  32. Marchuk, G.I.: Splitting Methods. Nauka, Moscow (1988) (in Russian)

    Google Scholar 

  33. Oseen, C.W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883–900 (1933)

    Article  MATH  Google Scholar 

  34. Pietraszkiewicz, W., Eremeev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009). https://doi.org/10.1016/j.ijsolstr.2008.09.027

  35. Prishchepa, O.O., Shabanov, A.V., Zyryanov, V.Ya.: Transformation of director configuration upon changing boundary conditions in droplets of nematic liquid crystal. JETP Lett. 79(6), 257–261 (2004). https://doi.org/10.1134/1.1759405

  36. Sadovskaya, O.V.: Numerical simulation of the dynamics of a liquid crystal in the case of plane strain using GPUs. AIP Conf. Proc. 1629, 303–310 (2014). https://doi.org/10.1063/1.4902286

  37. Sadovskaya, O.V., Sadovskii, V.M.: Analysis of rotational motion of material microstructure particles by equations of the Cosserat elasticity theory. Acoust. Phys. 56(6), 942–950 (2010). https://doi.org/10.1134/S1063771010060199

  38. Sadovskaya, O., Sadovskii, V.: Mathematical Modeling in Mechanics of Granular Materials. In: Altenbach, H. (ed.), Series of Advanced Structured Materials, vol. 21. Springer, Heidelberg, New York, Dordrecht, London (2012). https://doi.org/10.1007/978-3-642-29053-4

  39. Sadovskii, V.M.: Thermodynamically consistent system of conservation laws of nonsymmetric elasticity theory. Far Eastern Math. J. 11(2), 201–212 (2011) (in Russian)

    Google Scholar 

  40. Sadovskii, V.M.: Equations of the dynamics of a liquid crystal under the influence of weak mechanical and thermal perturbations. AIP Conf. Proc. 1629, 311–318 (2014). https://doi.org/10.1063/1.4902287

  41. Sadovskii, V.M.: Thermodynamically consistent equations of the couple stress elasticity. Far Eastern Math. J. 16(2), 209–222 (2016) (in Russian)

    Google Scholar 

  42. Sadovskii, V.: On thermodynamically consistent form of nonlinear equations of the Cosserat theory. Eng. Trans. 65(1), 201–208 (2017)

    Google Scholar 

  43. Sadovskii, V.M., Sadovskaya, O.V.: On the acoustic approximation of thermomechanical description of a liquid crystal. Phys. Mesomech. 16(4), 312–318 (2013). https://doi.org/10.1134/S102995991304005X

  44. Sadovskii, V.M., Sadovskaya, O.V., Varygina, M.P.: Numerical solution of dynamic problems in couple-stressed continuum on multiprocessor computer systems. Int. J. Numer. Anal. Model. B 2(2–3), 215–230 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Shibaev, V.P., Freidzon, Ya.S., Kostromin, S.G.: Molecular architecture and structure of thermotropic liquid crystal polymers with mesogenic side groups. In: Shibaev, V.P., Lam, L. (eds.) Liquid Crystalline and Mesomorphic Polymers, pp. 77–120. Springer, New York (1994). https://doi.org/10.1007/978-1-4613-8333-8

  46. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Series of Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin, Heidelberg, New York (1998). https://doi.org/10.1007/BFb0096355

  47. Skarp, K., Lagerwall, S.T., Stebler, B.: Measurement of hydrodynamic parameters for nematic 5CB. Mol. Cryst. Liq. Cryst. 60(3), 215–236 (1980). https://doi.org/10.1080/00268948008072401

  48. Sluckin, T.J., Dunmur, D.A., Stegemeyer, H. (eds.) Crystals that Flow: Classic Papers in the History of Liquid Crystals. CRC Press, London (2004). https://doi.org/10.1201/9780203022658

  49. Smolekho, I.V.: Parallel implementation of the algorithm for description of thermoelastic waves in liquid crystals. Young Sci. 11(91), 107–112 (2015) (in Russian)

    Google Scholar 

  50. Smolekho, I., Sadovskaya, O., Sadovskii, V.: Numerical analysis of acoustic waves in a liquid crystal taking into account couple-stress interaction. In: CEUR Workshop Proceedings: Mathematical and Information Technologies (MIT–2016), vol. 1839, pp. 473–486 (2017)

    Google Scholar 

  51. Smolekho, I.V., Sadovskaya, O.V., Sadovskii, V.M.: Numerical modeling of acoustic waves in a liquid crystal using CUDA technology. Comput. Technol. 22(Spec. Iss.), 87–98 (2017) (in Russian)

    Google Scholar 

  52. Sutormin, V.S., Krakhalev, M.N., Prishchepa, O.O.: Thermo-induced transformations of director configuration within nematic droplets dispersed in polyvinylpyrrolidone. J. SFU: Mathem. Phys. 2(3), 352–359 (2009) (in Russian)

    Google Scholar 

  53. Tomilin, M.G., Pestov, S.M.: Properties of Liquid Cristalline Materials. Politekhnika, St. Petersburg (2005). (in Russian)

    Google Scholar 

  54. Trashkeev, S.I., Britvin, A.V.: Thermal-oriented effect in a nematic liquid crystal. ZhTF 81(6), 1–7 (2011) (in Russian)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Complex Fundamental Research Program no. II.2P “Integration and Development” of Siberian Branch of the Russian Academy of Sciences (project no. 0356-2016-0728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sadovskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadovskii, V., Sadovskaya, O. (2018). Acoustic Approximation of the Governing Equations of Liquid Crystals Under Weak Thermomechanical and Electrostatic Perturbations. In: dell'Isola, F., Eremeyev, V., Porubov, A. (eds) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-73694-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73694-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73693-8

  • Online ISBN: 978-3-319-73694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics