Skip to main content

Solving a Special Case of the P Conjecture Using Dependency Graphs with Dissolution

  • Conference paper
  • First Online:
Book cover Membrane Computing (CMC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10725))

Included in the following conference series:

Abstract

We solve affirmatively a new special case of the P conjecture by Gh. Păun, which states that P systems with active membranes without charges and without non-elementary membrane division cannot solve \(\mathbf {NP}\)-complete problems in polynomial time. The variant we consider is monodirectional, i.e., without send-in communication rules, shallow, i.e., with membrane structures consisting of only one level besides the external membrane, and deterministic, rather than more generally confluent. We describe a polynomial-time Turing machine simulation of this variant of P systems, exploiting a generalised version of dependency graphs for P systems which, unlike the original version introduced by Cordón-Franco et al., also takes membrane dissolution into account.

This work was partially supported by Fondo d’Ateneo 2016 of Università degli Studi di Milano-Bicocca, project 2016-ATE-0492 “Sistemi a membrane: classi di complessità spaziale e temporale”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The determinism of the P systems is not explicitly stated in the original paper [8], but can be easily checked by inspection of the rules.

  2. 2.

    In the original notation [3, 5] the surrounding membranes are left implicit, and thus the vertex \( \big [ {[\cdots \,[a]_{h_d}\,\cdots ]_{h_1}} \big ]_{h_0}\)is simply denoted by \((a,h_d)\); an object a in the environment is denoted by \((a,\mathrm {env})\).

  3. 3.

    That is, node \((\mathsf {yes},\mathrm {env})\) in the original notation.

References

  1. Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and two polarizations. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31837-8_8

    Chapter  Google Scholar 

  2. Alhazov, A., Pérez-Jiménez, M.J.: Uniform solution of QSAT using polarizationless active membranes. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 122–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8_11

    Chapter  Google Scholar 

  3. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Exploring computation trees associated with P systems. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 278–286. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31837-8_16

    Chapter  Google Scholar 

  4. Gazdag, Z., Kolonits, G.: Remarks on the computational power of some restricted variants of P systems with active membranes. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 209–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54072-6_14

    Chapter  Google Scholar 

  5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: P systems with active membranes, without polarizations and without dissolution: a characterization of P. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 105–116. Springer, Heidelberg (2005). https://doi.org/10.1007/11560319_11

    Chapter  Google Scholar 

  6. Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006). https://doi.org/10.1007/11603047_16

    Chapter  Google Scholar 

  7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5_18

    Google Scholar 

  8. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional P systems. Nat. Comput. 15(4), 551–564 (2016). https://doi.org/10.1007/s11047-016-9565-2

    Article  MathSciNet  Google Scholar 

  9. Murphy, N., Woods, D.: Active membrane systems without charges and using only symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 367–384. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2_23

    Chapter  Google Scholar 

  10. Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Păun, G.: Further twenty six open problems in membrane computing. In: Gutíerrez-Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on Membrane Computing, pp. 249–262. Fénix Editora (2005)

    Google Scholar 

  12. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–284 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Woods, D., Murphy, N., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Membrane dissolution and division in P. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 262–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03745-0_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zandron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C. (2018). Solving a Special Case of the P Conjecture Using Dependency Graphs with Dissolution. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2017. Lecture Notes in Computer Science(), vol 10725. Springer, Cham. https://doi.org/10.1007/978-3-319-73359-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73359-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73358-6

  • Online ISBN: 978-3-319-73359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics