Skip to main content

Genetics of Autoimmune Regulator (AIRE) and Clinical Implications in Childhood

  • Living reference work entry
  • First Online:
Polyendocrine Disorders and Endocrine Neoplastic Syndromes

Part of the book series: Endocrinology ((ENDOCR))

  • 221 Accesses

Abstract

The Autoimmune Regulator (Aire) acts as a transcription regulator that promotes immunological central tolerance by inducing the ectopic thymic expression of many tissue-specific antigens (TSAs), which are presented to potentially self-reactive thymocytes to induce their apoptosis (negative selection) or to favor the generation of FoxP3+ regulatory T cells (Tregs). The precise mechanism of action of AIRE is still unclear. AIRE seems to facilitate transcription indirectly, by interacting with chromatin (where it can recognize chromatin marks typical of silenced loci) and co-operating with numerous partners. Several evidences indicate that AIRE may act in post-initiation events of gene transcription, through elongation of RNA transcripts and splicing of target TSAs.

To date, more than 130 different mutations in human Aire have been reported. Homozygous and heterozygous (dominant negative) mutations in AIRE result in the development of Autoimmune polyendocrine syndrome type 1 (APS-1), also called Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), a rare autoimmune syndrome, with typical onset in childhood.

Recent evidences suggest that mutations or dysregulated expression of AIRE may also play a role in the pathogenesis of isolated autoimmune manifestations (like hypoparathyroidism, rheumatoid arthritis, vitiligo, alopecia areata, systemic sclerosis), in the predisposition to autoimmunity in complex syndromes (i.e., Down Syndrome) or even in cancerogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott JK, Huoh YS, Reynolds PR, et al. Dominant-negative loss of function arises from a second, more frequent variant within the SAND domain of autoimmune regulator (AIRE). J Autoimmun. 2018;88:114–20.

    Article  CAS  Google Scholar 

  • Abramson J, Goldfarb Y. AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur J Immunol. 2016;46(1):22–33.

    Article  CAS  Google Scholar 

  • Anderson MS. Projection of an immunological self shadow within the thymus by the Aire protein. Science. 2002;298:1395–401.

    Article  CAS  Google Scholar 

  • Anderson MS, Su MA. AIRE expands: new roles in immune tolerance and beyond. Nat Rev Immunol. 2016;16(4):247–58.

    Article  CAS  Google Scholar 

  • Bansal K, Yoshida H, Benoist C, et al. The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol. 2017;18(3):263–73.

    Article  CAS  Google Scholar 

  • Boe Wolff AS, Oftedal B, Johansson S, et al. AIRE variations in Addison’s disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes Immun. 2008;9:130–6.

    Article  CAS  Google Scholar 

  • Bruserud Ø, Oftedal BE, Wolff AB, et al. AIRE-mutations and autoimmune disease. Curr Opin Immunol. 2016;43:8–15.

    Article  CAS  Google Scholar 

  • Capalbo D, De Martino L, Giardino G, et al. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy: insights into genotype-phenotype correlation. Int J Endocrinol. 2012;2012:353250.

    Article  Google Scholar 

  • Capalbo D, Improda N, Esposito A, et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy from the pediatric perspective. J Endocrinol Investig. 2013;36(10):903–12.

    CAS  Google Scholar 

  • Cetani F, Barbesino G, Borsari S, et al. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasisectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 2001;86:4747–52.

    Article  CAS  Google Scholar 

  • Chuprin A, Avin A, Goldfarb Y, et al. The deacetylase Sirt1 is an essential regulator of AIRE-mediated induction of central immunological tolerance. Nat Immunol. 2015;16:737–45.

    Article  CAS  Google Scholar 

  • Clark RA, Yamanaka K, Bai M, et al. Human skin cells support thymus-independent T cell development. J Clin Invest. 2005;115:3239–49.

    Article  CAS  Google Scholar 

  • Conteduca G, Ferrera F, Pastorino L, et al. The role of AIRE polymorphisms in melanoma. Clin Immunol. 2010;136:96–104.

    Article  CAS  Google Scholar 

  • Conteduca G, Indiveri F, Filaci G, et al. Beyond APECED: an update on the role of the autoimmune regulator gene (AIRE) in physiology and disease. Autoimmun Rev. 2018;17:325–30.

    Article  CAS  Google Scholar 

  • De Martino L, Capalbo D, Improda N, et al. Novel findings into AIRE genetics and functioning: clinical implications. Front Pediatr. 2016;4:86.

    Article  Google Scholar 

  • Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, et al. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest. 2016;126(4):1525–37.

    Article  Google Scholar 

  • Ferre EM, Rose SR, Rosenzweig SD, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy. JCI Insight. 2016;1(13):e88782.

    Article  Google Scholar 

  • Gardner JM, Devoss JJ, Friedman RS, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321:843–7.

    Article  CAS  Google Scholar 

  • Giménez-Barcons M, Casteràs A, Armengol MP, et al. Autoimmune predisposition in Down syndrome may result from a partial central tolerance failure due to insufficient intrathymic expression of AIRE and peripheral antigens. J Immunol. 2014;193(8):3872–9.

    Article  Google Scholar 

  • Giraud M, Jmari N, Du L, et al. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci U S A. 2014;111:1491–6.

    Article  CAS  Google Scholar 

  • Gray D, Abramson J, Benoist C, et al. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med. 2007;204(11):2521–8.

    Article  CAS  Google Scholar 

  • Guerau-de-Arellano M, Martinic M, Benoist C, et al. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J Exp Med. 2009;206(6):1245–52.

    Article  CAS  Google Scholar 

  • Guha M, Saare M, Maslovskaja J, et al. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes. J Biol Chem. 2017;292(16):6542–54.

    Article  CAS  Google Scholar 

  • Halonen M, Pelto-Huikko M, Eskelin P, et al. Subcellular location and expression pattern of autoimmune regulator (Aire), the mouse orthologue for human gene defective in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED). J Histochem Cytochem. 2001;49:197–208.

    Article  CAS  Google Scholar 

  • Honig M, Schwarz K. Omenn syndrome: a lack of tolerance on the background of deficient lymphocyte development andmaturation. Curr Opin Rheumatol. 2006;18:383–8.

    Article  Google Scholar 

  • Husebye ES, Perheentupa J, Rautemaa R, et al. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med. 2009;265:514–29.

    Article  CAS  Google Scholar 

  • Husebye ES, Anderson MS, Kämpe O. Autoimmune Polyendocrine Syndromes. N Engl J Med. 2018;378:1132–41.

    Article  CAS  Google Scholar 

  • Improda N, Capalbo D, Cirillo E, et al. Cutaneous vasculitis in patients with autoimmune polyendocrine syndrome type 1: report of a case and brief review of the literature. BMC Pediatr. 2014;14:272.

    Article  Google Scholar 

  • Kabachinski G, Schwartz TU. The nuclear pore complex–structure and function at a glance. J Cell Sci. 2015;128:423–9.

    Article  CAS  Google Scholar 

  • Kolivras A, Thompson C. Distinguishing diffuse alopecia areata (AA) from pattern hair loss (PHL) using CD3(+) T cells. J Am Acad Dermatol. 2016;74:937–44.

    Article  Google Scholar 

  • Lei Y, Ripen AM, Ishimaru N, et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med. 2011;208(2):383–94.

    Article  CAS  Google Scholar 

  • Li D, Streeten EA, Chan A, et al. Exome sequencing reveals mutations in AIRE as a cause of isolated hypoparathyroidism. J Clin Endocrinol Metab. 2017;102(5):1726–33.

    Article  Google Scholar 

  • Macedo C, Evangelista AF, Marques MM, et al. Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology. 2013;218(4):554–60.

    Article  CAS  Google Scholar 

  • Macedo C, Oliveira EH, Almeida RS, et al. Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction. Immunobiology. 2015;220(1):93–102.

    Article  CAS  Google Scholar 

  • Malchow S, Leventhal DS, Nishi S, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science. 2013;339:1219–24.

    Article  CAS  Google Scholar 

  • Maslovskaja J, Saare M, Liiv I, et al. Extended HSR/CARD domain mediates AIRE binding to DNA. Biochem Biophys Res Commun. 2015;468(4):913–20.

    Article  CAS  Google Scholar 

  • Matsumoto M, Nishikawa Y, Nishijima H, et al. Which model better fits the role of Aire in the establishment of self-tolerance: the transcription model or the maturation model? Front Immunol. 2013;22(4):210.

    Google Scholar 

  • McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071.

    Article  Google Scholar 

  • Meloni A, Furcas M, Cetani F, et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008a;93:4389–97.

    Article  CAS  Google Scholar 

  • Meloni A, Incani F, Corda D, et al. Role of PHD fingers and COOH-terminal 30 amino acids in AIRE transactivation activity. Mol Immunol. 2008b;45(3):805–9.

    Article  CAS  Google Scholar 

  • Meloni A, Willcox N, Meager A, et al. Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients. J Clin Endocrinol Metab. 2012;97(4):1114–24.

    Article  CAS  Google Scholar 

  • Nishijima H, Kajimoto T, Matsuoka Y, et al. Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). J Autoimmun. 2018;86:75–92.

    Article  CAS  Google Scholar 

  • Oftedal BE, Hellesen A, Erichsen MM. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity. 2015;42:1185–96.

    Article  CAS  Google Scholar 

  • Oliveira EH, Macedo C, Donate PB, et al. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology. 2013;218(1):96–104.

    Article  CAS  Google Scholar 

  • Org T, Chignola F, Hetényi C, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 2008;9(4):370–6.

    Article  CAS  Google Scholar 

  • Orlova EM, Sozaeva LS, Kareva MA, et al. Expanding the phenotypic and genotypic landscape of autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2017;102:3546–56.

    Article  Google Scholar 

  • Passos GA, Mendes-da-Cruz DA, Oliveira EH. The thymic orchestration involving Aire, miRNAs, and cell-cell interactions during the induction of central tolerance. Front Immunol. 2015;6:e352.

    Google Scholar 

  • Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. Biochim Biophys Acta. 2014;1842(2):326–37.

    Article  CAS  Google Scholar 

  • Perniola R. Twenty years of AIRE. Front Immunol. 2018;9:98.

    Article  Google Scholar 

  • Peterson P, Peltonen L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun. 2005;25(Suppl):49–55.

    Article  CAS  Google Scholar 

  • Pinto S, Michel C, Schmidt-Glenewinkel H, et al. Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity. Proc Natl Acad Sci U S A. 2013;110(37):E3497–505.

    Article  CAS  Google Scholar 

  • Pitkanen J, Doucas V, Sternsdorf T, et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J Biol Chem. 2000;275:16802–9.

    Article  CAS  Google Scholar 

  • Rattay K, Claude J, Rezavandy E, et al. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. J Immunol. 2015;194:921–8.

    Article  CAS  Google Scholar 

  • Saltis M, Criscitiello MF, Ohta Y, et al. Evolutionarily conserved and divergent regions of the autoimmune regulator (Aire) gene: a comparative analysis. Immunogenetics. 2008;60(2):105–14.

    Article  CAS  Google Scholar 

  • Schaller CE, Wang CL, Beck-Engeser G, et al. Expression of Aire and the early wave of apoptosis in spermatogenesis. J Immunol. 2008;180:1338–43.

    Article  CAS  Google Scholar 

  • Tazi-Ahnini R, Cork MJ, Gawkrodger DJ, et al. Role of the autoimmune regulator (AIRE) gene in alopecia areata: strong association of a potentially functional AIRE polymorphism with alopecia universalis. Tissue Antigens. 2001;60(6):489–95.

    Article  Google Scholar 

  • Tazi-Ahnini R, McDonagh AJ, Wengraf DA, et al. The autoimmune regulator gene (AIRE) is strongly associated with vitiligo. Br J Dermatol. 2008;159:591–6.

    CAS  PubMed  Google Scholar 

  • Ucar O, Tykocinski L-O, Dooley J, et al. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression. Eur J Immunol. 2013;43(7):1769–78.

    Article  CAS  Google Scholar 

  • Walter JE, Rosen LB, Csomos K, et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest. 2015;125(11):4135–48.

    Article  Google Scholar 

  • Wang CY, Shi JD, Davoodi-Semiromi A, et al. Cloning of Aire, the mouse homologue of the autoimmune regulator (AIRE) gene responsible for autoimmune polyglandular syndrome type 1 (ASP1). Genomics. 1999;55:322–6.

    Article  CAS  Google Scholar 

  • Waterfield M, Khan IS, Cortez JT, et al. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat Immunol. 2014;15(3):258–65.

    Article  CAS  Google Scholar 

  • Wolff AS, Karner J, Owe JF, et al. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. J Immunol. 2014;193:3880–90.

    Article  CAS  Google Scholar 

  • Yamano T, Nedjic J, Hinterberger M, et al. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity. 2015;42:1048–61.

    Article  CAS  Google Scholar 

  • Yang S, Bansal K, Lopes J, et al. Aire’s plant homeodomain (PHD)-2 is critical for induction of immunological tolerance. Proc Natl Acad Sci U S A. 2013;110:1833–8.

    Article  CAS  Google Scholar 

  • Yang S, Fujicado N, Kolodin D, et al. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015;348(6234):589–94.

    Article  CAS  Google Scholar 

  • Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med. 2008;205:2827–38.

    Article  CAS  Google Scholar 

  • Yoshida H, Bansal K, Schaefer U, et al. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. Proc Natl Acad Sci. 2015;112(32):E4448–57.

    Article  CAS  Google Scholar 

  • Zhu ML, Nagavalli A, Su MA. Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res. 2013;73:2104–16.

    Article  CAS  Google Scholar 

  • Zhu M-L, Bakhru P, Conley B, et al. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator. Nat Commun. 2016;7:e11350.

    Article  Google Scholar 

  • Zlotogora J, Shapiro MS. Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet. 1992;29:824–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salerno Mariacarolina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nicola, I., Mariacarolina, S., Donatella, C. (2019). Genetics of Autoimmune Regulator (AIRE) and Clinical Implications in Childhood. In: Colao, A., Jaffrain-Rea, ML., Beckers, A. (eds) Polyendocrine Disorders and Endocrine Neoplastic Syndromes. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73082-0_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73082-0_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73082-0

  • Online ISBN: 978-3-319-73082-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics