Skip to main content

Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Positive Bacterial Pathogenesis

  • Living reference work entry
  • First Online:
Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 208 Accesses

Abstract

A growing number of both Gram-positive and Gram-negative bacteria are now known to produce lipases, sphingomyelinases, and phospholipases, and many of these enzymes have been shown to be involved in bacterial pathogenesis. In this review, lipases, sphingomyelinases, and phospholipases from Gram-positive bacteria are described and their roles in furthering the entry into and growth within host cells and tissues are discussed. The importance of phospholipases and sphingomyelinases in infections caused by Clostridium perfringens and Listeria monocytogenes have been demonstrated by many studies on the wild type and mutant forms of these enzymes. The significance of lipases, sphingomyelinases, and phospholipases for other infectious organisms including Staphylococcus aureus, Bacillus anthracis, and Mycobacterium tuberculosis is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberti-Segui C, Goeden KR, Higgins DE (2007) Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell Microbiol 9:179–195

    Article  CAS  PubMed  Google Scholar 

  • Awad MM, Bryant AE, Stevens DL, Rood JI (1995) Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15:191–202

    Article  CAS  PubMed  Google Scholar 

  • Birmingham CL, Canadieni V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH (2007) Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451

    Article  CAS  PubMed  Google Scholar 

  • Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–U13

    Article  CAS  PubMed  Google Scholar 

  • Bryant AE, Chen RYZ, Nagata Y, Wang Y, Lee CH, Finegold S, Guth PH, Stevens DL (2000) Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens. J Infect Dis 182:799–807

    Article  CAS  PubMed  Google Scholar 

  • Callegan MC, Cochran DC, Kane ST, Gilmore MS, Gominet M, Lereclus D (2002a) Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect Immun 70:5381–5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callegan MC, Kane ST, Cochran DC, Gilmore MS (2002b) Molecular mechanisms of Bacillus endophthalmitis pathogenesis. DNA Cell Biol 21:367–373

    Article  CAS  PubMed  Google Scholar 

  • Camilli A, Goldfine H, Portnoy DA (1991) Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med 173:751–754

    Article  CAS  PubMed  Google Scholar 

  • Camilli A, Tilney LG, Portnoy DA (1993) Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Goldfine H, Ananthanarayanan B, Cho W, Roberts MF (2009) Listeria monocytogenes phosphatidylinositol-specific phospholipase C: kinetic activation and homing in on different interfaces. Biochemistry 48:3578–3592

    Article  CAS  PubMed  Google Scholar 

  • Dedieu L, Serveau-Avesque C, Canaan S (2013) Identification of residues involved in substrate specificity and cytotoxicity of two closely related Cutinases from Mycobacterium tuberculosis. PLoS One 8:e66913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Diaz M, Alape-Giron A (2003) Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42:979–986

    Article  CAS  PubMed  Google Scholar 

  • Flores-Diaz M, Alape-Giron A, Clark G, Catimel B, Hirabayashi Y, Nice E, Gutierrez JM, Titball R (2005) A cellular deficiency of gangliosides causes hypersensitivity to Clostridium perfringens phospholipase C. J Biol Chem 280:26680–26689

    Article  CAS  PubMed  Google Scholar 

  • Flores-Diaz M, Monturiol-Gross L, Naylor C, Alape-Giron A, Flieger A (2016) Bacterial sphingomyelinases and phospholipases as virulence factors. Microbiol Mol Biol Rev 80:597–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster BM, Bitar AP, Slepkov ER, Kota KJ, Sondermann H, Marquis H (2011) The metalloprotease of Listeria monocytogenes is regulated by pH. J Bacteriol 193:5090–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag NE, Rong L, Portnoy DA (1993) Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61:2537–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard JL, Berche P, Sansonetti P (1986) Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52:50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard J-L, Berche P, Mounier J, Richard S, Sansonetti P (1987) In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi AJ, Perussia B, Goldfine H (1993) Listeria monocytogenes phosphatidylinositol (PI)-specific phospholipase C has low activity on glycosyl-PI anchored proteins. J Bacteriol 175:8014–8017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geoffroy C, Raveneau J, Beretti J-L, Lecroisey A, Vazquez-Boland J-A, Alouf JE, Berche P (1991) Purification and characterization of an extracellular 29-kilodalton phospholipase C. From Listeria monocytogenes. Infect Immun 59:2382–2388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giese B, Glowinski F, Paprotka K, Dittmann S, Steiner T, Sinha B, Fraunholz MJ (2011) Expression of delta-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of beta-toxin. Cell Microbiol 13:316–329

    Article  CAS  PubMed  Google Scholar 

  • Goldfine H, Knob C (1992) Purification and characterization of Listeria monocytogenes phosphatidylinositol-specific phospholipase C. Infect Immun 60:4059–4067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfine H, Marquis H (2007) Escape of Listeria monocytogenes from a vacuole. In: Goldfine H, Shen H (eds) Listeria monocytogenes: pathogenesis and host response. Springer, New York

    Chapter  Google Scholar 

  • Goni FM, Montes LR, Alonso A (2012) Phospholipases C and sphingomyelinases: lipids as substrates and modulators of enzyme activity. Prog Lipid Res 51:238–266

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Zorn B, Dominguez-Bernal G, Suarez M, Ripio MT, Vega Y, Novella S, Rodriguez A, Chico I, Tierrez A, Vazquez-Boland JA (2000) SmcL, a novel membrane-damaging virulence factor in Listeria. Int J Med Microbiol 290:369–374

    Article  CAS  PubMed  Google Scholar 

  • Heffernan BJ, Thomason B, Herring-Palmer A, Shaughnessy L, McDonald R, Fisher N, Huffnagle GB, Hanna P (2006) Bacillus anthracis phospholipases C facilitate macrophage-associated growth and contribute to virulence in a murine model of inhalation anthrax. Infect Immun 74:3756–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffernan BJ, Thomason B, Herring-Palmer A, Hanna P (2007) Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol Lett 271:98–105

    Article  CAS  PubMed  Google Scholar 

  • Heinz DW, Ryan M, Smith MP, Weaver LH, Keana JFW, Griffith OH (1996) Crystal structure of phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with glucosaminyl(α1-->6)-D- myo-inositol, an essential fragment of GPI anchors. Biochemistry 35:9496–9504

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Gershenson A, Roberts MF (2016) Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH. Biochim Biophys Acta 1864:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseby M, Shi K, Brown CK, Digre J, Mengistu F, Seo KS, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA (2007) Structure and biological activities of beta toxin from Staphylococcus aureus. J Bacteriol 189:8719–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, Bayles KW, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA (2010) Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A 107:14407–14412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikezawa H, Yamanegi M, Taguchi R, Miyashita T, Ohyabu T (1976) Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus I Purification, properties and phosphatase-releasing activity. Biochim Biophys Acta 450:154–164

    Article  CAS  PubMed  Google Scholar 

  • Johansen KA, Gill RE, Vasil ML (1996) Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 64:3259–3266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson G (2017) The alpha/beta hydrolase fold proteins of Mycobacterium tuberculosis, with reference to their contribution to virulence. Curr Protein Pept Sci 18:190–210

    Article  CAS  PubMed  Google Scholar 

  • Kathariou S, Metz P, Hof H, Goebel W (1987) Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klichko VI, Miller J, Wu A, Popov SG, Alibek K (2003) Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 303:855–862

    Article  CAS  PubMed  Google Scholar 

  • Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH (2011) Listeriolysin O suppresses phospholipase C-mediated activation of the Microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe 10:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Chevalier F, Cascioferro A, Frigui W, Pawlik A, Boritsch EC, Bottai D, Majlessi L, Herrmann JL, Brosch R (2015) Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Sci Rep 5:16918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leimeister-Wächter M, Haffner C, Domann E, Goebel W, Chakraborty T (1990) Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci U S A 87:8336–8340

    Article  PubMed  PubMed Central  Google Scholar 

  • Leimeister-Wächter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositol specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5:361–366

    Article  PubMed  Google Scholar 

  • Lorber B (2007) Listeriosis. In: Goldfine H, Shen H (eds) Listeria monocytogenes: pathogenesis and host response. Springer, New York

    Google Scholar 

  • Low MG, Finean JB (1977) Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C. Biochem J 167:281–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane MG, Knight BCJG (1941) The biochemistry of bacterial toxins. I The lecithinase activity of Cl welchii toxins. Biochem J 35:884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquis H, Doshi V, Portnoy DA (1995) Broad range phospholipase C and metalloprotease mediate Listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63:4531–4534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marquis H, Hager EJ (2000) pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol Microbiol 35:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengaud J, Braun-Breton C, Cossart P (1991a) Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor. Mol Microbiol 5:367–372

    Article  CAS  PubMed  Google Scholar 

  • Mengaud J, Dramsi S, Gouin E, Vazquez-Boland J-A, Milon G, Cossart P (1991b) Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283

    Article  CAS  PubMed  Google Scholar 

  • Miner MD, Port GC, Freitag NE (2007) Regulation of Listeria monocytogenes virulence genes. In: Goldfine H, Shen H (eds) Listeria monocytogenes: pathogenesis and host response. Springer, New York

    Google Scholar 

  • Mitchell G, Ge L, Huang QY, Chen C, Kianian S, Roberts MF, Schekman R, Portnoy DA (2015) Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect Immun 83:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell G, Cheng MI, Chen C, Nguyen BN, Whiteley AT, Kianian S, Cox JS, Green DR, McDonald KL, Portnoy DA (2018) Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci U S A 115:E210–E217

    Article  CAS  PubMed  Google Scholar 

  • Monturiol-Gross L, Flores-Diaz M, Pineda-Padilla MJ, Castro-Castro AC, Alape-Giron A (2014) Clostridium perfringens phospholipase C induced ROS production and cytotoxicity require PKC, MEK1 and NF kappa B activation. PLoS One 9:e86475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moser J, Gerstel B, Meyer JEW, Chakraborty T, Wehland J, Heinz DW (1997) Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes. J Mol Biol 273:269–282

    Article  CAS  PubMed  Google Scholar 

  • O’Brien DK, Melville SB (2004) Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C-perfringens in host tissues. Infect Immun 72:5204–5215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochi S, Miyawaki T, Matsuda H, Oda M, Nagahama M, Sakurai J (2002) Clostridium perfringens alpha-toxin induces rabbit neutrophil adhesion. Microbiology-Sgm 148:237–245

    Article  CAS  Google Scholar 

  • Oda M, Hashimoto M, Takahashi M, Ohmae Y, Seike S, Kato R, Fujita A, Tsuge H, Nagahama M, Ochi S, Sasahara T, Hayashi S, Hirai Y, Sakurai J (2012a) Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS One 7:e38054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda M, Shiihara R, Ohmae Y, Kabura M, Takagishi T, Kobayashi K, Nagahama M, Inoue M, Abe T, Setsu K, Sakurai J (2012b) Clostridium perfringens alpha-toxin induces the release of IL-8 through a dual pathway via TrkA in A549 cells. BBA-Mol Basis Dis 1822:1581–1589

    Article  CAS  Google Scholar 

  • Oda M, Imagawa H, Kato R, Yabiku K, Yoshikawa T, Takemoto T, Takahashi H, Yamamoto H, Nishizawa M, Sakurai J, Nagahama M (2014) Novel inhibitor of bacterial sphingomyelinase, SMY-540, developed based on three-dimensional structure analysis. J Enzyme Inhib Med Chem 29:303–310

    Article  CAS  PubMed  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000

    Article  CAS  PubMed  Google Scholar 

  • Portnoy DA, Jacks PS, Hinrichs DJ (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471

    Article  CAS  PubMed  Google Scholar 

  • Poussin MA, Leitges M, Goldfine H (2009) The ability of Listeria monocytogenes PI-PLC to facilitate escape from the macrophage phagosome is dependent on host PKC beta. Microb Pathog 46:1–5

    Article  CAS  PubMed  Google Scholar 

  • Poyart C, Abachin E, Razafimanantsoa I, Berche P (1993) The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 61:1576–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Py BF, Lipinski MM, Yuan JY (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125

    Article  CAS  PubMed  Google Scholar 

  • Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16:32–46

    Article  CAS  PubMed  Google Scholar 

  • Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M (2002) Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45:203–217

    Article  CAS  PubMed  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, Deboy RT, Madpu R, Daugherty SC, Durkin AS, Haft DH, Nelson WC, Peterson JD, Pop M, Khouri HM, Radune D, Benton JL, Mahamoud Y, Jiang LX, Hance IR, Weidman JF, Berry KJ, Plaut RD, Wolf AM, Watkins KL, Nierman WC, Hazen A, Cline R, Redmond C, Thwaite JE, White O, Salzberg SL, Thomason B, Friedlander AM, Koehler TM, Hanna PC, Kolsto AB, Fraser CM (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    Article  CAS  PubMed  Google Scholar 

  • Rezanka T, Padrova K, Sigler K (2017) Regioisomeric and enantiomeric analysis of triacylglycerols. Anal Biochem 524:3–12

    Article  CAS  PubMed  Google Scholar 

  • Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5:455–468

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A (2018) Search and subvert: minimalist bacterial phosphatidylinositol-specific phospholipase C enzymes. Chem Rev 118:8435–8473

    Article  CAS  PubMed  Google Scholar 

  • Schlüter D, Domann E, Buck C, Hain T, Hof H, Chakraborty T, Deckert-Schlüter M (1998) Phosphatidylcholine-specific phospholipase c from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect Immun 66:5930–5938

    PubMed  PubMed Central  Google Scholar 

  • Schue M, Maurin D, Dhouib R, N'goma JCB, Delorme V, Lambeau G, Carriere F, Canaan S (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24:1893–1903

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer N, Nöst R, Seybold J, Parida SK, Fuhrmann O, Krüll M, Schmidt R, Newton R, Hippenstiel S, Domann E, Chakraborty T, Suttorp N (1998) Two distinct phospholipases C of Listeria monocytogenes induce ceramide generation, nuclear factor-kappaB activation, and E- selectin expression in human endothelial cells. J Immunol 161:3010–3018

    CAS  PubMed  Google Scholar 

  • Shannon JG, Ross CL, Koehler TM, Rest RF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibelius U, Chakraborty T, Krögel B, Wolf J, Rose F, Schmidt R, Wehland J, Seeger W, Grimminger F (1996) The listerial exotoxins listeriolysin and phosphatidylinositol- specific phospholipase C synergize to elicit endothelial cell phosphoinositide metabolism. J Immunol 157:4055–4060

    CAS  PubMed  Google Scholar 

  • Sibelius U, Schulz EC, Rose F, Hattar K, Jacobs T, Weiss S, Chakraborty T, Seeger W, Grimminger F (1999) Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun 67:1125–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H (1995) The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DL, Titball RW, Jepson M, Bayer CR, Hayes-Schroer SM, Bryant AE (2004) Immunization with the C-domain of alpha -toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens. J Infect Dis 190:767–773

    Article  CAS  PubMed  Google Scholar 

  • Stonehouse MJ, Cota-Gomez A, Parker SK, Martin WE, Hankin JA, Murphy RC, Chen WB, Lim KB, Hackett M, Vasil AI, Vasil ML (2002) A novel class of microbial phosphocholine-specific phospholipases C. Mol Microbiol 46:661–676

    Article  CAS  PubMed  Google Scholar 

  • Tajima A, Iwase T, Shinji H, Seki K, Mizunoe Y (2009) Inhibition of endothelial Interleukin-8 production and neutrophil transmigration by Staphylococcus aureus Beta-Hemolysin. Infect Immun 77:327–334

    Article  CAS  PubMed  Google Scholar 

  • Takagishi T, Takehara M, Seike S, Miyamoto K, Kobayashi K, Nagahama M (2017) Clostridium perfringens alpha-toxin impairs erythropoiesis by inhibition of erythroid differentiation. Sci Rep 7:11

    Article  Google Scholar 

  • Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE (2013) Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J 32:3066–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Urbina P, Collado MI, Alonso A, Goni FM, Flores-Diaz M, Alape-Giron A, Ruysschaert JM, Lensink MF (2011) Unexpected wide substrate specificity of C. perfringens alpha-toxin phospholipase C. BBA-Biomembranes 1808:2618–2627

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Volwerk JJ, Wetherwax PB, Evans LM, Kuppe A, Griffith OH (1989) Phosphatidylinositol-specific phospholipase C from Bacillus cereus: improved purification, amino acid composition, and amino terminal sequence. J Cell Biochem 39:315–325

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth SJ, Goldfine H (1999) Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. Infect Immun 67:1770–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wadsworth SJ, Goldfine H (2002) Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun 70:4650–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Schnupf P, Poussin MA, Zenewicz LA, Shen H, Goldfine H (2005a) Characterization of Listeria monocytogenes expressing anthrolysin O and phosphatidylinositol-specific phospholipase C from Bacillus anthracis. Infect Immun 73:6639–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Zenewicz LA, Goldfine H (2005b) Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity of GPI anchors. Proc Natl Acad Sci U S A 102:12927–12931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung PSM, Zagorski N, Marquis H (2005) The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase c. J Bacteriol 187:2601–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung PSM, Na YJ, Kreuder AJ, Marquis H (2007) Compartmentalization of the broad-range phospholipase C activity to the spreading vacuole is critical for Listeria monocytogenes virulence. Infect Immun 75:44–51

    Article  CAS  PubMed  Google Scholar 

  • Zenewicz LA, Skinner JA, Goldfine H, Shen H (2004) Listeria monocytogenes virulence proteins induce surface expression of Fas ligand on T lymphocytes. Mol Microbiol 51:1483–1492

    Article  CAS  PubMed  Google Scholar 

  • Zenewicz LA, Wei Z, Goldfine H, Shen H (2005) Phosphatidylinositol-specific phospholipase C of Bacillus anthracis down-modulates the immune response. J Immunol 174:8011–8016

    Article  CAS  PubMed  Google Scholar 

  • Zückert WR, Marquis H, Goldfine H (1998) Modulation of enzymatic activity and biological function of Listeria monocytogenes broad-range phospholipase C by amino acid substitutions and by replacement with the Bacillus cereus ortholog. Infect Immun 66:4823–4831

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Goldfine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Goldfine, H. (2019). Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Positive Bacterial Pathogenesis. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics