Skip to main content

Alchemical Derivatives of Atoms: A Walk Through the Periodic Table

  • Chapter
  • First Online:

Abstract

Exploring the Chemical Compound Space is at stake when looking for molecules with optimal properties. In order to guide experimentalists to navigate through this unimaginably huge space, theoreticians should look for efficient and cheap algorithms. One of the strategies put forward some years ago was to look for transmutation of molecular structures, thereby changing their nuclear charge content, for which alchemical derivatives are instrumental. A collection of well tested isolated atom alchemical derivatives would be a basic instrument in a navigation toolbox. In this work, isolated atom alchemical derivatives were evaluated with different techniques, from the more accurate numerical differentiation and Coupled Perturbed Kohn–Sham approaches to the \(Z^{-1}\) energy expansion model which upon derivation with respect to Z yields the desired derivatives. For this third approach a systematic, computationally elegant, method is developed to routinely evaluate an optimal set of all expansion coefficients in the energy expansion for a given N. For the lighter elements, \(Z=1-18\), the comparison between the three approaches shows that the order of magnitude and sequences in the different approaches are similar paving the way for a walk through the complete Periodic Table by combining the \(Z^{-1}\) expansion approach with the National Institute of Standards and Technology (NIST) databank atomic energy values at various levels of LDA. A uniform decrease is retrieved not only for the alchemical potential (the electrostatic potential at the origin) but also for the alchemical hardness, with some minor exceptions. The latter values are relatively strongly influenced by relativistic effects for the heavy elements. The uniform decrease of the first derivative is evidenced and quantified. Periodicity shows up in some exploratory calculations on the third derivative (the hyperhardness) which turn out to be strongly basis set dependent. The Periodic Tables generated could be used in a first step in exploring Chemical Compound Space in a systematic, efficient and cheap way. Some possible refinements (atoms-in-molecules corrections) and extensions (inclusion of mixed Z and N derivatives) are touched upon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Kirkpatrick, C. Ellis, Nature 432(7019), 823 (2004). https://doi.org/10.1038/432823a

  2. C.M. Dobson, Nature 432(7019), 824 (2004). https://doi.org/10.1038/nature03192

  3. O.A. von Lilienfeld, Int. J. Quantum Chem. 113(12), 1676 (2013). https://doi.org/10.1002/qua.24375

  4. A. Franceschetti, A. Zunger, Nature 402(6757), 60 (1999). https://doi.org/10.1038/46995

  5. G.H. Jóhannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. Lett. 88, 255506 (2002). https://doi.org/10.1103/PhysRevLett.88.255506

  6. M. Wang, X. Hu, D.N. Beratan, W. Yang, J. Am. Chem. Soc. 128(10), 3228 (2006). https://doi.org/10.1021/ja0572046

  7. C. Kuhn, D.N. Beratan, J. Phys. Chem. 100(25), 10595 (1996). https://doi.org/10.1021/jp960518i

  8. D. Balamurugan, W. Yang, D.N. Beratan, J. Chem. Phys. 129(17), 174105 (2008). https://doi.org/10.1063/1.2987711

  9. F. De Vleeschouwer, A. Chankisjijev, P. Geerlings, F. De Proft, Eur. J. Org. Chem. 2015(3), 506 (2015). https://doi.org/10.1002/ejoc.201403198

  10. F. De Vleeschouwer, P. Geerlings, F. De Proft, Chem. Phys. Chem. 17(10), 1414 (2016). https://doi.org/10.1002/cphc.201501189

  11. O.A. von Lilienfeld, R.D. Lins, U. Rothlisberger, Phys. Rev. Lett. 95, 153002 (2005). https://doi.org/10.1103/PhysRevLett.95.153002

  12. O.A. von Lilienfeld, M.E. Tuckerman, J. Chem. Phys. 125(15), 154104 (2006). https://doi.org/10.1063/1.2338537

  13. O.A. von Lilienfeld, M.E. Tuckerman, J. Chem. Theory Comput. 3(3), 1083 (2007), PMID: 26627427. https://doi.org/10.1021/ct700002c

  14. O.A. von Lilienfeld, J. Chem. Phys. 131(16), 164102 (2009). https://doi.org/10.1063/1.3249969

  15. K.Y.S. Chang, S. Fias, R. Ramakrishnan, O.A. von Lilienfeld, J. Chem. Phys. 144(17), 174110 (2016). https://doi.org/10.1063/1.4947217

  16. M. to Baben, J.O. Achenbach, O.A. von Lilienfeld, J. Chem. Phys. 144(10), 104103 (2016). https://doi.org/10.1063/1.4943372

  17. M. Lesiuk, R. Balawender, J. Zachara, J. Chem. Phys. 136(3), 034104 (2012). https://doi.org/10.1063/1.3674163

  18. R. Balawender, M.A. Welearegay, M. Lesiuk, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 9(12), 5327 (2013). https://doi.org/10.1021/ct400706g

  19. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). ISBN 9780195092769

    Google Scholar 

  20. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103(5), 1793 (2003). https://doi.org/10.1021/cr990029p

  21. P. Geerlings, F. De Proft, Phys. Chem. Chem. Phys. 10, 3028 (2008). https://doi.org/10.1039/B717671F

  22. S. Liu, T. Li, P.W. Ayers, J. Chem. Phys. 131(11), 114106 (2009). https://doi.org/10.1063/1.3231687

  23. P. Geerlings, Z. Boisdenghien, F. De Proft, S. Fias, Theor. Chem. Acc. 135(9), 213 (2016). https://doi.org/10.1007/s00214-016-1967-9

  24. P. Geerlings, S. Fias, Z. Boisdenghien, F. De Proft, Chem. Soc. Rev. 43, 4989 (2014). https://doi.org/10.1039/C3CS60456J

  25. N. Sablon, F. De Proft, P.W. Ayers, P. Geerlings, J. Chem. Phys. 126(22), 224108 (2007). https://doi.org/10.1063/1.2736698

  26. W. Yang, A.J. Cohen, F. De Proft, P. Geerlings, J. Chem. Phys. 136(14), 144110 (2012). https://doi.org/10.1063/1.3701562

  27. N. Sablon, F. De Proft, P. Geerlings, J. Phys. Chem. Lett. 1(8), 1228 (2010). https://doi.org/10.1021/jz1002132

  28. S. Fias, P. Geerlings, P. Ayers, F. De Proft, Phys. Chem. Chem. Phys. 15, 2882 (2013). https://doi.org/10.1039/C2CP43612D

  29. Z. Boisdenghien, S. Fias, F. Da Pieve, F. De Proft, P. Geerlings, Mol. Phys. 113(13-14), 1890 (2015). https://doi.org/10.1080/00268976.2015.1021110

  30. Z. Boisdenghien, C. Van Alsenoy, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 9(2), 1007 (2013). https://doi.org/10.1021/ct300861r

  31. T. Stuyver, S. Fias, F. De Proft, P.W. Fowler, P. Geerlings, J. Chem. Phys. 142(9), 094103 (2015). https://doi.org/10.1063/1.4913415

  32. R. Balawender, M. Lesiuk, F. De Proft, P. Geerlings, J. Chem. Theory Comput. 14(2), (2018). https://doi.org/10.1021/acs.jctc.7b01114

  33. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68(8), 3801 (1978). https://doi.org/10.1063/1.436185

  34. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105(26), 7512 (1983). https://doi.org/10.1021/ja00364a005

  35. P. Fuentealba, R.G. Parr, J. Chem. Phys. 94(8), 5559 (1991). https://doi.org/10.1063/1.460491

  36. W. Kohn, L.J. Sham, Phys. Rev. 137, A1697 (1965). https://doi.org/10.1103/PhysRev.137.A1697

  37. E.A. Hylleraas, Z. Phys. 65(3), 209 (1930). https://doi.org/10.1007/BF01397032

  38. N.H. March, R.J. White, J. Phys. B: At. Mol. Phys. 5(3), 466 (1972); Reprinted in Ref. [74]. https://doi.org/10.1088/0022-3700/5/3/011

  39. N.H. March, R.G. Parr, Proc. Natl. Acad. Sci. (USA) 77(11), 6285 (1980); Reprinted in Ref. [74]

    Google Scholar 

  40. N.H. March, R.G. Parr, J.F. Mucci, Proc. Natl. Acad. Sci. (USA) 78(10), 5942 (1981)

    Article  ADS  Google Scholar 

  41. S. Kotochigova, Z.H. Levine, E.L. Shirley, M.D. Stiles, C.W. Clark, Atomic reference data for electronic structure calculations, (National Institute of Standards and Technology, Gaithersburg, MD, 2003), ver. 1.3

    Google Scholar 

  42. R. Balawender, L. Komorowski, J. Chem. Phys. 109(13), 5203 (1998). https://doi.org/10.1063/1.477137

  43. R. Balawender, P. Geerlings, J. Chem. Phys. 123(12), 124102 (2005). https://doi.org/10.1063/1.2012329

  44. R. Balawender, P. Geerlings, J. Chem. Phys. 123(12), 124103 (2005). https://doi.org/10.1063/1.2012330

  45. A.J. Cohen, P. Mori-Sánchez, W. Yang, Phys. Rev. B 77, 115123 (2008). https://doi.org/10.1103/PhysRevB.77.115123

  46. P. Politzer, P. Lane, J.S. Murray, in Reviews of quantum modern chemistry. A celebration of the contributions of Robert G. Parr, vol. 1, ed. by K.D. Sen (World Scientific, Singapore, 2012), pp. 63–84

    Google Scholar 

  47. A.D. Becke, R.M. Dickson, J. Chem. Phys. 89(5), 2993 (1988). https://doi.org/10.1063/1.455005

  48. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

  49. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96(9), 6796 (1992). https://doi.org/10.1063/1.462569

  50. D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 98(2), 1358 (1993). https://doi.org/10.1063/1.464303

  51. D.E. Woon, T.H. Dunning Jr., J. Chem. Phys. 100(4), 2975 (1994). https://doi.org/10.1063/1.466439

  52. D. Layzer, Ann. Phys. 8(2), 271 (1959). https://doi.org/10.1016/0003-4916(59)90023-5

  53. P.O. Löwdin, J. Mol. Spectrosc. 3(1), 46 (1959). https://doi.org/10.1016/0022-2852(59)90006-2

  54. Y. Tal, M. Levy, Phys. Rev. A 23, 408 (1981). https://doi.org/10.1103/PhysRevA.23.408

  55. J.L. Gázquez, A. Vela, M. Galván, Phys. Rev. Lett. 56, 2606 (1986). https://doi.org/10.1103/PhysRevLett.56.2606

  56. J.L. Gázquez, A. Vela, Phys. Rev. A 38, 3264 (1988). https://doi.org/10.1103/PhysRevA.38.3264

  57. A. Vela, M. Galván, J.L. Gázquez, Int. J. Quantum Chem. 34(S22), 329 (1988). https://doi.org/10.1002/qua.560340837

  58. B.G. Englert, J. Schwinger, Phys. Rev. A 32, 26 (1985). https://doi.org/10.1103/PhysRevA.32.26

  59. B.G. Englert, J. Schwinger, Phys. Rev. A 32, 36 (1985). https://doi.org/10.1103/PhysRevA.32.36

  60. B.G. Englert, J. Schwinger, Phys. Rev. A 32, 47 (1985). https://doi.org/10.1103/PhysRevA.32.47

  61. C. Van Alsenoy, A. Peeters, J. Mol. Struct. Theochem 286, 19 (1993). https://doi.org/10.1016/0166-1280(93)87148-7

  62. B. Rousseau, C. Van Alsenoy, A. Peeters, F. Bogár, G. Paragi, J. Mol. Struct. Theochem 666, 41 (2003). The role of chemistry in the evolution of molecular medicine. A Tribute to Professor Albert Szent-Gyorgyi to Celebrate his 110th Birthday. https://doi.org/10.1016/j.theochem.2003.08.011

  63. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14(11), 1347 (1993). https://doi.org/10.1002/jcc.540141112

  64. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106(14), 4049 (1984). https://doi.org/10.1021/ja00326a036

  65. W. Yang, R.G. Parr, R. Pucci, J. Chem. Phys. 81(6), 2862 (1984); Reprinted as chap. 22, p. 303, of Ref. [75]. https://doi.org/10.007/978-3-319-53664-4_22, https://doi.org/10.1063/1.447964

  66. E. Echegaray, A. Toro-Labbe, K. Dikmenli, F. Heidar-Zadeh, N. Rabi, S. Rabi, P.W. Ayers, C. Cárdenas, R.G. Parr, J.S.M. Anderson, in Angilella and La Magna [75], chap. 19, pp. 269–288. https://doi.org/10.1007/978-3-319-53664-4_19, ISBN 9783319536637

  67. W.P. Ayers, M. Levy, Theor. Chem. Acc. 103(3), 353 (2000). https://doi.org/10.1007/s002149900093

  68. C. Cárdenas, W. Tiznado, P.W. Ayers, P. Fuentealba, J. Phys. Chem. A 115(11), 2325 (2011). https://doi.org/10.1021/jp109955q

  69. P.K. Chattaraj, A. Cedillo, R.G. Parr, J. Chem. Phys. 103(24), 10621 (1995). https://doi.org/10.1063/1.469847

  70. W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108(19), 5708 (1986). https://doi.org/10.1021/ja00279a008

  71. K.A. Van Genechten, W.J. Mortier, P. Geerlings, J. Chem. Phys. 86(9), 5063 (1987). https://doi.org/10.1063/1.452649

  72. W.J. Mortier, in Electronegativity, ed. by K.D. Sen, C.K. Jørgensen (Springer, Berlin, 1987), pp. 125–143

    Google Scholar 

  73. Y. Tal, L.J. Bartolotti, J. Chem. Phys. 76(8), 4056 (1982). https://doi.org/10.1063/1.443479

  74. N.H. March, G.G.N. Angilella (eds.), Many-Body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)

    MATH  Google Scholar 

  75. G.G.N. Angilella, A. La Magna (eds.), Correlations in Condensed Matter Under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of his 70th Birthday (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-53664-4, ISBN 9783319536637

Download references

Acknowledgements

The authors acknowledge financial support by the VUB (Vrije Universiteit Brussel) under the form of a Strategic Research Program (SRP) (PG and FDP), the Interdisciplinary Centre for Mathematical and Computational Modelling computational grant (RB). FDP also acknowledges the Francqui foundation for a position as Francqui research professor. It is both an honour and a pleasure for all of us to dedicate this paper to Professor Norman March, a towering scientist, a true companion and loyal guide on the road to good science, every inch a gentleman. Congratulations, Norman, on the occasion of your 90th birthday!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Van Alsenoy .

Editor information

Editors and Affiliations

Appendices

Appendices

20.A Solution of the System of Equations Using the NIST Data

The system of equations to be considered is

$$\begin{aligned} N^2 \varepsilon _0^{[N]} + N \varepsilon _1^{[N]} + N^{-1} \varepsilon _3^{[N]}&= E^{[Z=N,N]} ,\end{aligned}$$
(20.29a)
$$\begin{aligned} 2N \varepsilon _0^{[N]} + \varepsilon _1^{[N]} - N^{-2} \varepsilon _3^{[N]}&= V_{en}^{[Z=N,N]} / N ,\end{aligned}$$
(20.29b)
$$\begin{aligned} (N+1)^2 \varepsilon _0^{[N]} + (N+1) \varepsilon _1^{[N]} + \varepsilon _2^{[N]} + (N+1)^{-1} \varepsilon _3^{[N]}&= E^{[Z=N+1,N]} ,\end{aligned}$$
(20.29c)
$$\begin{aligned} 2(N+1) \varepsilon _0^{[N]} + \varepsilon _1^{[N]} - (N+1)^{-2} \varepsilon _3^{[N]}&= V_{en}^{[Z=N+1,N]} / (N+1) , \end{aligned}$$
(20.29d)

where \(E^{[Z=N,N]}\), \(V_{en}^{[Z=N,N]}\), and \(\varepsilon _j^{[N]}\) mean \(E^{[Z=N,N]}_{\mathrm {NIST}}\), \(V_{en,\, \mathrm {NIST}}^{[Z=N,N]}\), and \(\tilde{\varepsilon }_j^{[N;4]}\).

After some simple algebra, the solutions of Eq. (20.29) can be written as follows

$$\begin{aligned} \varepsilon _0^{[N]}&= V_{en}^{[Z=N+1,N]} + V_{en}^{[Z=N,N]} - (2N+1) \varDelta E^ + ,\end{aligned}$$
(20.30a)
$$\begin{aligned} \varepsilon _3^{[N]}&= N^2 (N+1)^2 \left( 2 \varDelta E^+ - \frac{1}{N} V_{en}^{[Z=N,N]} - \frac{1}{N+1} V_{en}^{[Z=N+1,N]} \right) , \end{aligned}$$
(20.30b)
$$\begin{aligned} \varepsilon _1^{[N]}&= \varDelta E^+ - (2N+1) \varepsilon _0^{[N]} + \frac{1}{N(N+1)} \varepsilon _3^{[N]} ,\end{aligned}$$
(20.30c)
$$\begin{aligned} \varepsilon _2^{[N]}&= E^{[Z=N,N]} - N^2 \varepsilon _0^{[N]} -N \varepsilon _1^{[N]} - N^{-1} \varepsilon _3^{[N]} , \end{aligned}$$
(20.30d)

with \(\varDelta E^+ = E^{[Z=N+1,N]} - E^{[Z=N,N]}\).

Table 20.6 Alchemical hyperhardness, \(\gamma _{\mathrm {al}}\), Eq. (20.31)

20.B Alchemical Hyperhardness Values for Li to Cl

The alchemical hyperhardness can be calculated numerically from Eq. (20.7) or as the second derivative of the alchemical potential, Eq. (20.1):

$$\begin{aligned} \gamma _{\mathrm {al}} [Z=N, N ] = \frac{\mu _{\mathrm {al}}[Z+\delta ,N] - 2 \mu _{\mathrm {al}}[Z,N] + \mu _{\mathrm {al}}[Z-\delta ,N]}{\delta ^2} . \end{aligned}$$
(20.31)

The results in Table 20.6 are calculated with aug-cc-pCVTZ basis set.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balawender, R., Holas, A., De Proft, F., Van Alsenoy, C., Geerlings, P. (2018). Alchemical Derivatives of Atoms: A Walk Through the Periodic Table . In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_20

Download citation

Publish with us

Policies and ethics