Skip to main content

Termite Preferences for Foraging Sites

  • Chapter
  • First Online:
  • 820 Accesses

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Termite interaction with soil and its manipulation create spatial variability via the nests and other structures they build using mainly finer materials from surrounding soils. Their preference for particular nesting and foraging conditions profoundly affects the physical as well as microbial properties of soils. Their activities to transport soil and water as well as establish and maintain symbiotic relationship with some microorganisms create suitable nesting and foraging places. They also create fertile area in an otherwise barren landscape. More knowledge on their interaction with soil and preferential foraging might help in understanding the conditions under which they are spreading beyond their usual climatic zones. Their potential for improving poor soil conditions into productive ones is also immense. This chapter details termite soil interaction and their preference for foraging sites in different environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abensperg-Traun, M. (1998). Termites (Isoptera) in Western Australia: Present and future directions of ecological research. Journal of the Royal Society of Western Australia, 81, 131–142.

    Google Scholar 

  • Ackerman, I. L., Teixeira, W. G., Riha, S. J., Lehmann, J., & Fernandes, E. C. M. (2007). The impact of mound-building termites on surface soil properties in a secondary forest of central Amazonia. Applied Soil Ecology, 37, 267–276.

    Article  Google Scholar 

  • Adekayode, F. O., & Ogunkoya, M. O. (2009). Comparative study of clay and organic matter content of termite mounds and the surrounding soils. African Crop Science Conference Proceedings, 9, 379–384.

    Google Scholar 

  • Ahmed, B. M. (2000). The effects of boron-treated timbers against Coptotermes species in Australia. Ph.D thesis, Melbourne University, The University of Melbourne, Melbourne

    Google Scholar 

  • Ali, I. G., Sheridan, G., French, J. R. J., & Ahmed, B. M. (2013). Ecological benefits of termite soil interaction and microbial symbiosis in the soil ecosystem. Journal of Earth Sciences and Geotechnical Engineering, 3, 63–85.

    CAS  Google Scholar 

  • Ali, I. G., Sheridan, G., French, J. R. J., & Ahmed, B. M. (Shiday). (2014, March 15–16). Termite foraging and preference to soil type and moisture content in laboratory bioassays. In International conference on emerging trends in scientific research. Kuala Lumpur: Pearl International Hotel.

    Google Scholar 

  • Arab, A., & Costa-Leonardo, A. M. (2005). Effect of biotic and abiotic factors on the tunneling behavior of Coptotermes gestroi and Heterotermes tenuis (Isoptera: Rhinotermitidae). Behavioural Processes, 70, 32–40.

    Article  PubMed  Google Scholar 

  • Arshad, M. A. (1981). Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Science, 132, 161–174.

    Article  Google Scholar 

  • Arshad, M. A., Schnitzer, M., & Preston, C. M. (1988). Characterization of humic acid from termite mounds and surrounding soils, Kenya. Geoderma, 42, 213–225.

    Article  CAS  Google Scholar 

  • Asawalam, D. O., & Johnson, S. (2007). Physical and chemical characteristics of soils modified by earthworms and termites. Communications in Soil Science and Plant Analysis, 38, 513–521.

    Article  CAS  Google Scholar 

  • Asawalam, D. O., Osodeke, V. E., Kamalu, O. J., & Ugwa, I. K. (1999). Effects of termites on the physical and chemical properties of the acid sandy soils of southern Nigeria. Communications in Soil Science and Plant Analysis, 30, 1691–1696.

    Article  CAS  Google Scholar 

  • Bagine, R. K. N. (1984). Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of Northern Kenya. Oecologia, 64, 263–266.

    Article  PubMed  Google Scholar 

  • Bignell, D. E., Oskarsson, H., & Anderson, J. M. (1978). Association of actinomycete-like bacteria with soil-feeding termites (Termitidae, Termitinae). Applied and Environmental Microbiology, 37, 339–342.

    Google Scholar 

  • Black, H. I. J., & Okwakol, M. J. N. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of termites. Applied Soil Ecology, 6, 37–53.

    Article  Google Scholar 

  • Brauman, A. (2000). Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. European Journal of Soil Biology, 36, 117–125.

    Article  Google Scholar 

  • Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  CAS  Google Scholar 

  • Campora, C. E., & Grace, J. K. (2004). Effect of average worker size on tunneling behavior of Formosan subterranean termite colonies. Journal of Insect Behavior, 17, 777–791.

    Article  Google Scholar 

  • Collins, N. M. (1984). Termites and atmospheric gas production. Science, 224, 84–86.

    Article  CAS  PubMed  Google Scholar 

  • Cookson, L. J., & Trajstman, A. C. (2002). Termite survey and hazard mapping. Clayton South: CSIRO Forestry and Forest Products.

    Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. A. (2010). Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 103, 799–807.

    Article  PubMed  Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. A. (2011). Influence of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus, to locate food sources. Journal of Insect Science, 11, 162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelius, M. L., Duplessis, L. M., & Osbrink, W. L. A. (2007). The impact of Hurricane Katrina on the distribution of subterranean termite colonies (Isoptera: Rhinotermitidae) in City Park, New Orleans, Louisiana. Sociobiology, 50, 311–335.

    Google Scholar 

  • Coventry, R. J., Holt, J. A., & Sinclair, D. F. (1988). Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research, 26, 375–390.

    Article  Google Scholar 

  • Dawes-Gromadzki, T. Z. (2005). The termite (Isoptera) fauna of a monsoonal rainforest near Darwin, Northern Australia. Australian Journal of Entomology, 44, 152–157.

    Article  Google Scholar 

  • Diaye, D. N., Duponnois, R., Brauman, A., & Lepage, M. (2003). Impact of a soil feeding termite, Cubitermes nikoloensis, on the symbiotic microflora associated with a fallow leguminous plant Crotalaria ochroleuca. Biology and Fertility of Soils, 37, 313–318.

    Google Scholar 

  • Duponnois, R., Assikbetse, K., Ramanankierana, H., Kisa, M., Thioulouse, J., & Lepage, M. (2006). Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holosericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiology Ecology, 56, 292–303.

    Article  CAS  PubMed  Google Scholar 

  • Eggleton, P. (2001). Termites and trees: A review of recent advances in termite phylogenetics. Insectes Sociaux, 48, 187–193.

    Article  Google Scholar 

  • Evans, T. A. (2003). The influence of soil heterogeneity on exploratory tunnelling by the subterranean termite Coptotermes frenchi (Isoptera: Rhinotermitidae). Bulletin of Entomological Research, 93, 413–423.

    Article  CAS  PubMed  Google Scholar 

  • Forschler, B. T., & Henderson, G. (1995). Subterranean termite behavioral reaction to water and survival of inundation: Implications for field populations. Environmental Entomology, 24, 1592–1597.

    Article  Google Scholar 

  • French, J. R. J. (1988). A case for ecosystem-level experimentation in termite research. Socio-Economic Planning Sciences, 14, 269–280.

    Google Scholar 

  • French, J. R. J., & Ahmed, B. M. (2010). The challenge of biomimetic design for carbon-neutral buildings using termite engineering. Insect Science, 17, 154–162.

    Article  Google Scholar 

  • French, J. R. J., & Ahmed, B. M. (2011). Biomimicry of termite social cohesion and design to inspire and create sustainable systems. In L. D. Pramaturova (Ed.), On biomimetics (pp. 571–586). Rijeka: InTech.

    Google Scholar 

  • French, J. R. J., Turner, G. L., & Bradbury, J. F. (1976). Nitrogen fixation by bacteria from the hindgut of termites. Journal of General Microbiology, 95, 202–206.

    Article  CAS  Google Scholar 

  • Gautam, B. K., & Henderson, G. (2011). Effects of sand moisture level on food consumption and distribution of Formosan subterranean termites (Isoptera: Rhinotermitidae) with different soldier proportions. Journal of Entomological Science, 46, 1–13.

    Article  Google Scholar 

  • Gay, F., & Calaby, J. (1970). Termites of the Australian region. Biology of Termites, 2, 393–448.

    Google Scholar 

  • Green, J. M., Scharf, M. E., & Bennett, G. W. (2005). Impacts of soil moisture level on consumption and movement of three sympatric subterranean termites (Isoptera: Rhinotermitidae) in a laboratory assay. Journal of Economic Entomology, 98, 933–937.

    Article  PubMed  Google Scholar 

  • Harris, W. V. (1956). Termite mound building. Insectes Sociaux, 3, 261–268.

    Article  Google Scholar 

  • Haverty, M. I., & Nutting, W. L. (1976). Environmental factors affecting geographical distribution of two ecologically equivalent termite species in Arizona. The American Midland Naturalist, 95, 20–27.

    Article  Google Scholar 

  • Haverty, M. I., Lafage, J. P., & Nutting, W. L. (1974). Seasonal activity and environmental-control of foraging of subterranean termite, Heterotermes aureus (Snyder), in a desert grassland. Life Sciences, 15, 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  • Holt, J. A., & Coventry, R. J. (1990). Nutrient cycling in Australian savannas. Journal of Biogeography, 17, 427–432.

    Article  Google Scholar 

  • Holt, J. A., & Lepage, M. (2000). Termites and soil properties. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 389–407). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Holt, J. A., Coventry, R. J., & Sinclair, D. F. (1980). Some aspects of the biology and pedological significance of mound-building termites in a red and yellow earth landscape near Charters Towers, north Queensland. Australian Journal of Soil Research, 18, 97–109.

    Article  Google Scholar 

  • Holt, J. A., Robertson, L. N., & Radford, B. J. (1993). Effects of tillage and stubble residue treatments on termite activity in 2 Central Queensland Vertosols. Australian Journal of Soil Research, 31, 311–317.

    Article  Google Scholar 

  • Houseman, R. M., & Gold, R. E. (2003). Factors that influence tunneling in the Eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). Journal of Agricultural and Urban Entomology, 20, 69–81.

    Google Scholar 

  • Hulugalle, N. R., & Ndi, J. N. (1993). Soil properties of termite mounds under different land uses in a Typic Kandiudult of Southern Cameroon. Agriculture, Ecosystems and Environment, 43, 69–78.

    Article  CAS  Google Scholar 

  • Jouquet, P., Lepage, M., & Velde, B. (2002). Termite soil preferences and particle selections: strategies related to ecological requirements. Insectes Sociaux, 49, 1–7.

    Article  Google Scholar 

  • Jouquet, P., Ranjard, L., Lepage, M., & Lata, J. C. (2005). Incidence of fungus-growing termites (Isoptera, Macrotermitinae) on the structure of soil microbial communities. Soil Biology and Biochemistry, 37, 1852–1859.

    Article  CAS  Google Scholar 

  • Kambhampati, S., & Eggleton, P. (2000). Taxonomy and phylogeny of termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses (pp. 1–23). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Konate, S., Le Roux, X., Tessier, D., & Lepage, M. (1999). Influence of large termitaria on soil characteristics, soil water regime, and tree leaf shedding pattern in a West African savanna. Plant and Soil, 206, 47–60.

    Article  Google Scholar 

  • Kurtböke, D. I., & French, J. R. J. (2008). Actinobacterial resources from termite guts for regional bioindustries. Microbiology Australia, 29, 42–44.

    Google Scholar 

  • Kurtböke, D. İ., Kurtböke, J. R. J., French, R. A., Hayes, R., & Quinn, R. J. (2014). Eco-taxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. In J. Mukherjee (Ed.), Biotechnological applications biodiversity (pp. 111–135). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Lal, R. (1988). Effects of macrofauna on soil properties in tropical ecosystems. Agriculture, Ecosystems and Environment, 24, 101–116.

    Article  Google Scholar 

  • Lavelle, P. (1997). Soil function in a changing world: The role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33, 159–193.

    CAS  Google Scholar 

  • Lavelle, P., Barros, E., Blanchart, E., Brown, G., Desjardins, T., Mariani, L., & Rossi, J. P. (2001). SOM management in the tropics: Why feeding the soil macrofauna? Nutrient Cycling in Agroecosystems, 61, 53–61.

    Article  Google Scholar 

  • Lax, A. R., & Osbrink, W. L. (2003). United States Department of Agriculture – Agriculture Research Service – Research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Pest Management Science, 59, 788–800.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., & Su, N. Y. (2010). A novel approach to characterize branching network: Application to termite tunnel patterns. Journal of Asia-Pacific Entomology, 13, 117–120.

    Article  Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soils. London/New York: Academic.

    Google Scholar 

  • Li, H. F., & Su, N. Y. (2008). Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America, 101, 456–462.

    Article  Google Scholar 

  • Lobry de Bruyn, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification-a review. Australian Journal of Soil Research, 28, 55–93.

    Google Scholar 

  • Lobry de Bruyn, L. A., & Conacher, A. J. (1995). Soil modification by termites in the central wheat belt of Western Australia. Australian Journal of Soil Research, 33, 179–193.

    Article  Google Scholar 

  • Margulis, L. (1998). Symbiotic planet: A new look at evolution. New York: Basic Books.

    Google Scholar 

  • Margulis, L., & Sagan, D. (2002). Acquiring genomes: A theory of the origins of the species. New York: Basic Books.

    Google Scholar 

  • Millogo, Y., Hajjaji, M., & Morel, J. C. (2011). Physical properties, microstructure and mineralogy of termite mound material considered as construction materials. Applied Clay Science, 52, 160–164.

    Article  CAS  Google Scholar 

  • Nobre, T., Nunes, L., & Bignell, D. E. (2007). Tunneling patterns of the subterranean termite species Reticulitermes grassei (Isoptera: Rhinotermitidae). In I. R. G. Secretariat (Ed.), 38th Annual meeting of the international research group on wood protection (pp 1–12). Wyoming: Jackson Lake Lodge.

    Google Scholar 

  • Nutting, W. L., Haverty, M. I., & Lafage, J. P. (1987). Physical and chemical alteration of soil by two subterranean termite species in Sanoran Desert grassland. Journal of Arid Environments, 12, 233–239.

    Google Scholar 

  • O’Brien, R. W., & Slaytor, M. (1982). Role of microorganisms in the metabolism of termites. Australian Journal of Biological Sciences, 35, 239–262.

    Google Scholar 

  • Palin, O. F., Eggleton, P., Malhi, Y., Girardin, C. A. J., Rozas-Dávila, A., & Parr, C. L. (2011). Termite diversity along an Amazon–Andes elevation gradient, Peru. Biotropica, 43, 100–107.

    Article  Google Scholar 

  • Peterson, C. J. (2010). Termites and climate change: Here, there and everywhere? Alexandria: EARTH/Leahy PP.

    Google Scholar 

  • Radek, R. (1999). Flagellates, bacteria, and fungi associated with termites: diversity and function in nutrition – A review. Ecotropica, 5, 183–196.

    Google Scholar 

  • Rogers, L. K. R., French, J. R. J., & Elgar, M. A. (1999). Suppression of plant growth on the mounds of the termite Coptotermes lacteus Froggatt (Isoptera, Rhinotermitidae). Insectes Sociaux, 46, 366–371.

    Article  Google Scholar 

  • Sarcinelli, T. S., Schaefer, C. E. G. R., Lynch, L. S., Arato, H. D., Viana, J. H. M., Albuquerque Filho, M. R., & Goncalves, T. T. (2009). Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena, 76, 107–113.

    Article  Google Scholar 

  • Sheikh, K. H., & Kayani, S. A. (1982). Termite-affected soils in Pakistan. Soil Biology and Biochemistry, 14, 359–364.

    Article  Google Scholar 

  • Smith, J. L. & Rust, M. K. (1991). Factors affecting the tunneling behavior of the Western subterranean termite, Reticulitermes hesperus Banks. In M. I. Haverty, & W. W. Wilcox (Eds.), Proceedings of the symposium on current research on wood-destroying organisms and future prospects for protecting wood in use (pp 28–34). Bend: Pacific Southwest Research Station.

    Google Scholar 

  • Su, N. Y., & Puche, H. (2003). Tunneling activity of subterranean termites (Isoptera: Rhinotermitidae) in sand with moisture gradients. Journal of Economic Entomology, 96, 88–93.

    Article  PubMed  Google Scholar 

  • Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management, 21, 37–49.

    Article  Google Scholar 

  • Tucker, C. L., Koehler, P. G., & Oi, F. M. (2004). Influence of soil compaction on tunnel network construction by the Eastern subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 97, 89–94.

    Article  PubMed  Google Scholar 

  • Turner, J. S. (2006). Termites as mediators of the water economy of Arid Savanna ecosystems. In A. Porporato & P. D’Odorico (Eds.), Dryland Ecohydrology (pp. 303–313). Berlin: Springer.

    Chapter  Google Scholar 

  • Turner, J. S. & Soar, R. C. (2008). Beyond biomimicry: What termites can tell us about realizing the living building. In T. Hassen, & J. Ye (Eds.), Proceedings of the first international conference on Industrialized, Integrated, Intelligent Construction (I3CON) (pp 221–237). Loughborough: Loughborough University

    Google Scholar 

  • Turner, S. J., Marais, E., Vinte, M., Mudengi, A., & Park, W. (2006). Termites, water and soils. Agricola, 16, 40–45.

    Google Scholar 

  • Watson, J. P. (1969). Water movement in two termite mounds in Rhodesia. Journal of Ecology, 57, 441–451.

    Article  Google Scholar 

  • Watson, J. P. (1977). The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. Journal of Soil Science, 28, 664–672.

    Article  CAS  Google Scholar 

  • Waughman, G. J., French, J. R. J., & Jones, K. (1981). Nitrogen fixation in some terrestrial environment. In W. J. Broughton (Ed.), Nitrogen fixation (pp. 135–192). Oxford: Clarendon Press.

    Google Scholar 

  • Whitford, W. G. (1982). Contributions of subterranean termites to the “economy” of Chihuahuan desert ecosystems. Oecologia, 55, 298.

    Article  PubMed  Google Scholar 

  • Wong, N., & Lee, C. Y. (2010). Influence of different substrate moistures on wood consumption and movement patterns of Microcerotermes crassus and Coptotermes gestroi (Blattodea: Termitidae, Rhinotermitidae). Journal of Economic Entomology, 103, 437–442.

    Article  PubMed  Google Scholar 

  • Wood, T. G. (1988). Termites and the soil environment. Biology and Fertility of Soils, 6, 228–236.

    Article  Google Scholar 

  • Wood, T. G., Johnson, R. A., & Anderson, J. M. (1983). Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biology and Biochemistry, 15, 575–579.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a partial grant from the Department of Forestry and Ecosystem Sciences, University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim G. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, I.G., Ahmed, B.M.(., Sheridan, G., French, J.R.J. (2018). Termite Preferences for Foraging Sites. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_9

Download citation

Publish with us

Policies and ethics