Skip to main content

Spectral Theory of Stationary Random Fields and their Generalizations. A Short Historical Survey

  • Chapter
  • First Online:
Book cover Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations

Part of the book series: Operator Theory: Advances and Applications ((LOLS,volume 263))

Abstract

Stationary fields and their generalizations play an important role in modeling of various biological, physical, geological and economical phenomena and give rise to various methods for forecasting, approximation and (machine) learning. Many modern techniques rely on spectral representations of the underlying models. The aim of this note is to give a short historical survey on the spectral theory of stationary fields, fields with stationary increments and intrinsically stationary fields. These random fields are closely related to unitary representations in Pontryagin spaces. In this context H. Langer and M.G. Kreĭn devoted several papers especially to continuation problems related to intrinsically stationary fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Basse-O’Connor, S.-E. Graversen, and J. Pedersen, Multiparameter processes with stationary increments: spectral representation and integration. Electron. J. Probab. 17 (2012), no. 74, 1–21.

    Google Scholar 

  2. G. Berschneider, Spectral representation of intrinsically stationary fields. Stochastic Process. Appl. 122 (2012), 3837–3851.

    Google Scholar 

  3. G. Berschneider and Z. Sasvári, On a theorem of Karhunen and related moment problems and quadrature formulae. In: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations. 21st International Workshop on Operator Theory and Applications, Berlin, July 2010 (W. Arendt, J.A. Ball, J. Behrndt, K.-H. Förster, V. Mehrmann, and C. Trunk, eds.), Operator Theory: Advances and Applications, vol. 221, Birkhäuser, 2012, pp. 173–188.

    Google Scholar 

  4. G.J. Berschneider, Conditionally positive definite kernels – an abstract approach. Ph.D. thesis, Zentrum Mathematik, Technische Universität München, 2010.

    Google Scholar 

  5. S. Bochner, Vorlesungen über Fouriersche Integrale. Math. u. ihre Anwendungen in Monogr. u. Lehrbüchern, vol. 12, Akad. Verlagsges.mbH., Leipzig, 1932 (German).

    Google Scholar 

  6. J.-P. Chilès and P. Delfiner, Geostatistics. Modeling spatial uncertainty. Wiley Series in Probability and Statistics, John Wiley and Sons, New York, 1999.

    Google Scholar 

  7. H. Cramér, On harmonic analysis in certain functional spaces. Ark. Mat. Astron. Fys. B 28 (1942), no. 12, 1–7.

    Google Scholar 

  8. I.M. Gel’fand, Generalized random processes. Dokl. Akad. Nauk SSSR, n. Ser. 100 (1955), 853–856 (Russian).

    Google Scholar 

  9. I.M. Gel’fand and N.J. Vilenkin, Verallgemeinerte Funktionen (Distributionen). IV: Einige Anwendungen der harmonischen Analyse. Gelfandsche Raumtripel. Hochschulb ücher für Mathematik, vol. 50, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964 (German).

    Google Scholar 

  10. K. Itȏ, Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto, Ser. A 28 (1954), 209–223.

    Google Scholar 

  11. K. Itȏ, Isotropic random current. In: Proceedings of the third Berkeley symposium on mathematical statistics and probability. Held at the Statistical Laboratory, University of California December 26–31, 1954, July and August 1955. Vol. II: Contributions to probability theory. (J. Neyman, ed.), University of California Press, Berkeley, CA, 1956, pp. 125–132.

    Google Scholar 

  12. K. Karhunen, Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fenn., Ser. I. A. Math. 34 (1946), 1–7 (German).

    Google Scholar 

  13. K. Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn., Ser. I. A. Math. 37 (1947), 1–79 (German).

    Google Scholar 

  14. A. Khintchine, Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109 (1934), 604–615 (German).

    Google Scholar 

  15. A.N. Kolmogorov, Kurven im Hilbertschen Raum, die gegenüber einer einparametrigen Gruppe von Bewegungen invariant sind. Dokl. Acad. Sci. URSS, n. Ser. 26 (1940), 6–9 (German).

    Google Scholar 

  16. A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Dokl. Acad. Sci. URSS, n. Ser. 26 (1940), 115–118 (German).

    Google Scholar 

  17. A.N. Kolmogorov, Stationary sequences in Hilbert space. Byull. Moskov Gos. Univ. Mat. 2 (1941), no. 6, 1–40, Translated by J.F. Barrett, Cambridge University, 1974.

    Google Scholar 

  18. M.G. Krein and H. Langer, Continuation of hermitian positive definite functions and related questions. Integral Equations Operator Theory 78 (2014), no. 1, 1–69.

    Google Scholar 

  19. J. LeSage and R.K. Pace, Introduction to spatial econometrics. Statistics: Textbooks and Monographs, CRC Press, Boca Raton, FL, 2009.

    Google Scholar 

  20. M. Loève, Fonctions aléatoires du second ordre. Appendix to P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Villars, Paris, 1948 (French).

    Google Scholar 

  21. G. Matheron, The intrinsic random functions and their applications. Adv. Appl. Probab. 5 (1973), 439–468.

    Google Scholar 

  22. J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 209 (1909), 415–446.

    Google Scholar 

  23. C.E. Rasmussen and C.K.I. Williams, Gaussian processes for machine learning. MIT Press, Cambridge, MA, 2006.

    Google Scholar 

  24. Z. Sasvári, Positive definite and definitizable functions. Mathematical Topics, vol. 2, Akademie Verlag, Berlin, 1994.

    Google Scholar 

  25. Z. Sasvári, The extension problem for positive definite functions. A short historical survey. In: Operator Theory and Indefinite Inner Product Spaces. Presented on the Occasion of the Retirement of Heinz Langer in the Colloquium on Operator Theory, Vienna, March 2004. (M. Langer, A. Luger, and H.Woracek, eds.), Operator Theory: Advances and Applications, vol. 163, Birkhäuser, Basel, 2006, pp. 365–379.

    Google Scholar 

  26. Z. Sasvári, Correlation functions of intrinsically stationary random fields. In:Modern Analysis and Applications, The Mark Krein Centennary Conference – Volume 1: Operator Theory and Related Topics (V. Adamyan, Y.M. Berezansky, I. Gohberg, M.L. Gorbachuk, V. Gorbachuk, A.N. Kochubei, H. Langer, and G. Popov, eds.), Operator Theory: Advances and Applications, vol. 190, Birkhäuser, Basel, 2009, pp. 451–470.

    Google Scholar 

  27. Z. Sasvári, Multivariate characteristic and correlation functions. Studies in Mathematics, vol. 50, de Gruyter, Berlin, 2013.

    Google Scholar 

  28. L. Schwartz, Théorie des distributions. Hermann, Paris, 1998 (French).

    Google Scholar 

  29. E. Slutsky, Sur les fonctions aléatoires presque périodiques et sur la décomposition des fonctions aléatoires stationnaires en composantes. Actual. sci. industr. 738 (1938), 33–55 (French).

    Google Scholar 

  30. I. Steinwart and C. Scovel, Mercer’s theorem on general domains: On the interaction between measures, kernels, and RKHSs. Constr. Approx. 35 (2012), 363–417.

    Google Scholar 

  31. J. von Neumann and I.J. Schoenberg, Fourier integrals and metric geometry. Trans. Amer. Math. Soc. 50 (1941), 226–251.

    Google Scholar 

  32. N. Wiener, Differential space. J. Math. Phys. 2 (1923), 131–174.

    Google Scholar 

  33. A.M. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2 (1957), no. 3, 273–320.

    Google Scholar 

  34. A.M. Yaglom, Correlation theory of stationary and related random functions. Volumes I/II. Springer Series in Statistics, Springer, New York, 1987.

    Google Scholar 

  35. A.M. Yaglom and M.S. Pinsker, Random processes with stationary increments of order n. Dokl. Acad.Nauk. URSS 90 (1953), no. 5, 731–734 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Berschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berschneider, G., Sasvári, Z. (2018). Spectral Theory of Stationary Random Fields and their Generalizations. A Short Historical Survey. In: Alpay, D., Kirstein, B. (eds) Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations. Operator Theory: Advances and Applications(), vol 263. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-68849-7_8

Download citation

Publish with us

Policies and ethics