Skip to main content

Estimates of \({{\mathrm{li}}}(\theta (x))-\pi (x)\) and the Riemann Hypothesis

  • Conference paper
  • First Online:
Analytic Number Theory, Modular Forms and q-Hypergeometric Series (ALLADI60 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 221))

Included in the following conference series:

Abstract

Let us denote by \(\pi (x)\) the number of primes \(\leqslant x\), by \({{\mathrm{li}}}(x)\) the logarithmic integral of x, by \(\theta (x)=\sum _{p\leqslant x} \log p\) the Chebyshev function and let us set \(A(x)={{\mathrm{li}}}(\theta (x))-\pi (x)\). Revisiting a result of Ramanujan, we prove that the assertion “\(A(x) > 0\) for \(x\geqslant 11\)” is equivalent to the Riemann Hypothesis.

To Krishna Alladi for his sixtieth birthday

Research partially supported by CNRS, UMR 5208.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New-York, 1964)

    Google Scholar 

  2. H. Cohen, Number Theory, Analytic and Modern Tools (Springer, Berlin, 2007)

    MATH  Google Scholar 

  3. P. Dusart, Explicit estimates of some functions over primes. Ramanujan J. (to appear)

    Google Scholar 

  4. H.M. Edwards, Riemann’s Zeta Function (Academic Press, 1974)

    Google Scholar 

  5. A.E. Ingham, The distribution of prime numbers. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1990), Reprint of the 1932 original. With a foreword by Vaughan, R.C

    Google Scholar 

  6. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, I, 2nd edn. (Chelsea, New York, 1953)

    MATH  Google Scholar 

  7. J.E. Littlewood, Sur la distribution des nombres premiers. C. R. Acad. Sci. Paris Sér. I Math. 158, 1869–1872 (1914)

    MATH  Google Scholar 

  8. A. Odlyzko, Table of zeros of the Riemann zeta function, http://www.dtc.umn.edu/~odlyzko/zeta_tables/index.html. Accessed 14 Nov 2017

  9. D.J. Platt, T. Trudgian, On the first sign change of \(\theta (x)-(x)\). Math. Comput. 85(299), 1539–1547 (2016)

    Google Scholar 

  10. G. Robin, Sur la différence Li\((\theta (x))-\pi (x)\). Annales Faculté des Sciences Toulouse 6, 257–268 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Ramanujan, Highly composite numbers. Proc. Lond. Math. Soc. 14, 347–409 (1915). Collected papers, Cambridge University Press, 78–128 (1927)

    Google Scholar 

  12. L. Schoenfeld, Sharper bounds for the Chebyshev functions \(\theta (x)\) and \(\psi (x)\). II. Math. Comput. 30, 337–360 (1976)

    MathSciNet  MATH  Google Scholar 

  13. http://math.univ-lyon1.fr/homes-www/~nicolas/lithetax.html (2016). Accessed 14 Nov 2017

Download references

Acknowledgements

I am pleased to thank Marc Deléglise for his computations and for several discussions about this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Nicolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nicolas, JL. (2017). Estimates of \({{\mathrm{li}}}(\theta (x))-\pi (x)\) and the Riemann Hypothesis. In: Andrews, G., Garvan, F. (eds) Analytic Number Theory, Modular Forms and q-Hypergeometric Series. ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-68376-8_32

Download citation

Publish with us

Policies and ethics