Skip to main content

Linguistically Described Covariance Matrix Estimation

  • Conference paper
  • First Online:
Man-Machine Interactions 5 (ICMMI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 659))

Included in the following conference series:

  • 1144 Accesses

Abstract

In this paper we present a covariance matrix estimation method based on linguistically described data samples. The linguistic variable describes a real data samples that could be used for a calculation of the covariance matrix. In most cases, real dataset contains noise samples that manifest as outliers. Hence, the covariance matrix estimation problem can be formulated in the following way: take only these data samples that are not outliers. In this way, the influence of outliers is confined and thereby increases the robustness of the estimation. Linguistic variable distance takes values that are fuzzy sets. In the simplest case, the distance can be small or large. The distance is calculated between the data samples and the dataset center. In this paper we used generalized sample mean estimator for the calculation of the dataset center. The proposed method was used in the nonlinear state-space projection method (NSSP) where the estimation of a covariance matrix plays crucial role. The modified NSSP method was applied to ECG signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balzi, A., Yger, F., Sugiyama, M.: Importance-weighted covariance estimation for robust common spacial pattern. Pattern Recogn. Lett. 68, 139–145 (2015)

    Article  Google Scholar 

  2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York (1981)

    Book  MATH  Google Scholar 

  3. Breloy, A., Ginolhac, G., et al.: Robust covariance matrix estimation in heterogeneous low rank context. IEEE Trans. Sig. Process. 64(22), 5794–5805 (2016)

    Article  MathSciNet  Google Scholar 

  4. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2000)

    MATH  Google Scholar 

  5. Guru, D., Suraj, M., Manjunath, S.: Fusion of covariance matrices of PCA and FLD. Pattern Recogn. Lett. 32(3), 432–440 (2011)

    Article  Google Scholar 

  6. He, R., Hu, B.G., et al.: Robust principal component analysis based on maximum correntropy criterion. IEEE Trans. Image Process. 20(6), 1485–1494 (2011)

    Article  MathSciNet  Google Scholar 

  7. Honeine, P.: Online kernel principal component analysis: a reduced-order model. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1814–1826 (2011)

    Article  Google Scholar 

  8. Huber, P.: Robust Statistics. Wiley, New Jersey (1982)

    MATH  Google Scholar 

  9. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Liang, Z., Xia, S., et al.: Feature extraction based on Lp-norm generalized principal component analysis. Pattern Recogn. Lett. 34(9), 1037–1045 (2013)

    Article  Google Scholar 

  11. Oh, J., Kwak, N.: Generalized mean for robust principal component analysis. Pattern Recogn. 54(C), 116–127 (2016)

    Article  Google Scholar 

  12. Schreiber, T., Kaplan, D.: Nonlinear noise reduction for electrocardiograms. Chaos: Interdisc. J. Nonlinear Sci. 6(1), 87–92 (1996)

    Article  Google Scholar 

  13. Verboven, S., Huber, M.: LIBRA: a MATLAB library for robust analysis. Chemometr. Intell. Lab. Syst. 75(2), 127–136 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by statutory funds (BK-2017) of the Institute of Electronics, Silesian University of Technology. The work was performed using the infrastructure supported by POIG.02.03.01-24-099/13 grant: GeCONiI—Upper Silesian Center for Computational Science and Engineering.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Przybyła, T., Pander, T. (2018). Linguistically Described Covariance Matrix Estimation. In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67792-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67791-0

  • Online ISBN: 978-3-319-67792-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics