Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1036))

Abstract

Immunosuppressive mechanisms within the tumor microenvironment have emerged as a major impediment to cancer immunotherapy. While a broad range of secreted factors, receptors/ligands, and cell populations have been described that contribute to the immunosuppression, the involvement of these processes in immune evasion by tumors is typically considered to be an intrinsic property of the tumor. Evidence is now emerging that the processes underlying immune suppression within the tumor are, in fact, triggered by immune attack and reflect a dynamic interplay between the tumor and the host’s immune system. The term adaptive resistance has been coined to describe the induction of immune suppressive pathways in the tumor following active attack on the tumor. Adaptive resistance is a scalable process where the magnitude of immune suppression matches the magnitude of the immune attack; the net balance between suppression and attack determines the durability of the anti-tumor response and tumor outcome. In this chapter, we will examine the data supporting adaptive resistance and the opposing roles of T cells in simultaneously promoting both anti-tumor immunity and immune suppression within the tumor microenvironment. The clinical implications of adaptive resistance in the design and application of immunotherapeutic strategies is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-Cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7. https://doi.org/10.1158/1078-0432.CCR-11-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73. https://doi.org/10.1126/scitranslmed.3002842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. https://doi.org/10.1126/science.aaa4967.

    Article  CAS  PubMed  Google Scholar 

  4. Robbins PF, Kassim SH, Tran TLN, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21:1019–27. https://doi.org/10.1158/1078-0432.CCR-14-2708.

    Article  CAS  PubMed  Google Scholar 

  5. Klebanoff CA, Gattinoni L, Palmer DC, et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res. 2011;17:5343–52. https://doi.org/10.1158/1078-0432.CCR-11-0503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Overwijk WWW, Tsung AA, Irvine KRK, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self-”reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med. 1998;188:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGray AJR, Hallett R, Bernard D, et al. Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol Ther. 2014;22:206–18. https://doi.org/10.1038/mt.2013.255.

    Article  CAS  PubMed  Google Scholar 

  8. Dudley ME, Gross CA, Langhan MM, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. 2010;16:6122–31. https://doi.org/10.1158/1078-0432.CCR-10-1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong SBJ, Bos R, Sherman LA. Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J Immunol. 2008;180:3122–31.

    Article  CAS  PubMed  Google Scholar 

  10. Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70:8368–77. https://doi.org/10.1158/0008-5472.CAN-10-1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ray S, Chhabra A, Chakraborty NG, et al. MHC-I-restricted melanoma antigen specific TCR-engineered human CD4+ T cells exhibit multifunctional effector and helper responses, in vitro. Clin Immunol. 2010;136:338–47. https://doi.org/10.1016/j.clim.2010.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding Z-C, Huang L, Blazar BR, et al. Polyfunctional CD4+ T cells are essential for eradicating advanced B-cell lymphoma after chemotherapy. Blood. 2012;120:2229–39. https://doi.org/10.1182/blood-2011-12-398321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hung K, Hayashi R, Lafond-Walker A, et al. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mattes J, Hulett M, Xie W, et al. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med. 2003;197:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344:641–5. https://doi.org/10.1126/science.1251102.

    Article  CAS  PubMed  Google Scholar 

  16. Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014;5:197. https://doi.org/10.3389/fimmu.2014.00197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chow MT, Möller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22:23–32. https://doi.org/10.1016/j.semcancer.2011.12.004.

    Article  CAS  PubMed  Google Scholar 

  18. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  19. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science. 1974;183:534–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hünig T, Bevan MJ. Specificity of cytotoxic T cells from athymic mice. J Exp Med. 1980;152:688–702.

    Article  PubMed  Google Scholar 

  22. Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1:447–56.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A. 1998;95:7556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11. https://doi.org/10.1038/35074122.

    Article  CAS  PubMed  Google Scholar 

  25. van den Broek ME, Kägi D, Ossendorp F, et al. Decreased tumor surveillance in perforin-deficient mice. J Exp Med. 1996;184:1781–90.

    Article  PubMed  Google Scholar 

  26. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331:1565–70. https://doi.org/10.1126/science.1203486.

    Article  CAS  PubMed  Google Scholar 

  27. Dunn S. Cancer Immunoediting: from immuno-surveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.

    Google Scholar 

  28. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370:59–67. https://doi.org/10.1016/S0140-6736(07)61050-2.

    Article  PubMed  Google Scholar 

  29. Tiriveedhi V, Tucker N, Herndon J, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res. 2014;20:5964–75. https://doi.org/10.1158/1078-0432.CCR-14-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Odunsi K, Matsuzaki J, James SR, et al. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res. 2014;2:37–49. https://doi.org/10.1158/2326-6066.CIR-13-0126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–27. https://doi.org/10.1056/NEJMoa1012863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Odunsi KK, Matsuzaki JJ, Karbach JJ, et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci U S A. 2012;109:5797–802. https://doi.org/10.1073/pnas.1117208109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoos A, Eggermont AMM, Janetzki S, et al. Improved endpoints for cancer immunotherapy trials. JNCI. J Natl Cancer Inst. 2010;102:1388–97. https://doi.org/10.1093/jnci/djq310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus Ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33. https://doi.org/10.1056/NEJMoa1302369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30. https://doi.org/10.1200/JCO.2013.53.0105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093.

    Article  CAS  PubMed  Google Scholar 

  37. MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348:567–8. https://doi.org/10.1056/NEJM200302063480620.

    Article  PubMed  Google Scholar 

  38. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85. https://doi.org/10.1038/onc.2008.273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Lora A, Martinez M, Algarra I, et al. MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer. 2003;106:521–7. https://doi.org/10.1002/ijc.11241.

    Article  CAS  PubMed  Google Scholar 

  40. Méndez R, Rodríguez T, Del Campo A, et al. Characterization of HLA class I altered phenotypes in a panel of human melanoma cell lines. Cancer Immunol Immunother. 2008;57:719–29. https://doi.org/10.1007/s00262-007-0411-3.

    Article  PubMed  CAS  Google Scholar 

  41. Seliger B. Novel insights into the molecular mechanisms of HLA class I abnormalities. Cancer Immunol Immunother. 2012;61:249–54. https://doi.org/10.1007/s00262-011-1153-9.

    Article  CAS  PubMed  Google Scholar 

  42. Lampen MH, van Hall T. Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol. 2011;23:293–8. https://doi.org/10.1016/j.coi.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  43. Aptsiauri N, Carretero R, Garcia-Lora A, et al. Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother. 2008;57:1727–33. https://doi.org/10.1007/s00262-008-0532-3.

    Article  CAS  PubMed  Google Scholar 

  44. Rolland P, Deen S, Scott I, et al. Human leukocyte antigen class I antigen expression is an independent prognostic factor in ovarian cancer. Clin Cancer Res. 2007;13:3591–6. https://doi.org/10.1158/1078-0432.CCR-06-2087.

    Article  CAS  PubMed  Google Scholar 

  45. Carretero R, Romero JM, Ruiz-Cabello F, et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics. 2008;60:439–47. https://doi.org/10.1007/s00251-008-0303-5.

    Article  CAS  PubMed  Google Scholar 

  46. Hicklin DJ, Wang Z, Arienti F, et al. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest. 1998;101:2720–9. https://doi.org/10.1172/JCI498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiménez P, Cantón J, Collado A, et al. Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors. Int J Cancer. 1999;83:91–7.

    Article  PubMed  Google Scholar 

  48. Maleno I, López-Nevot MA, Cabrera T, et al. Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother. 2002;51:389–96. https://doi.org/10.1007/s00262-002-0296-0.

    Article  CAS  PubMed  Google Scholar 

  49. Klippel ZK, Chou J, Towlerton AM, et al. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther. 2014;21:337–42. https://doi.org/10.1038/gt.2013.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan ANH, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother. 2008;57:647–54. https://doi.org/10.1007/s00262-007-0402-4.

    Article  CAS  PubMed  Google Scholar 

  51. Setiadi AF, Omilusik K, David MD, et al. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 2008;68:9601–7. https://doi.org/10.1158/0008-5472.CAN-07-5270.

    Article  CAS  PubMed  Google Scholar 

  52. Martini M, Testi MG, Pasetto M, et al. IFN-gamma-mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine. 2010;28:3548–57. https://doi.org/10.1016/j.vaccine.2010.03.007.

    Article  CAS  PubMed  Google Scholar 

  53. Mantovani A, Savino B, Locati M, et al. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21:27–39. https://doi.org/10.1016/j.cytogfr.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  54. Mukaida N, Sasaki S-I, Baba T. Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm. 2014;2014:170381. https://doi.org/10.1155/2014/170381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Prestwich R, Errington F, Hatfield P, et al. The immune system—is it relevant to cancer development, progression and treatment? Clin Oncol. 2008;20:101–12. https://doi.org/10.1016/j.clon.2007.10.011.

    Article  CAS  Google Scholar 

  56. Stewart TJ, Smyth MJ. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 2011;30:125–40. https://doi.org/10.1007/s10555-011-9280-5.

    Article  CAS  PubMed  Google Scholar 

  57. Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146. https://doi.org/10.1146/annurev.immunol.24.021605.090737.

    Article  CAS  PubMed  Google Scholar 

  58. Mocellin S, Marincola F, Rossi CR, et al. The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev. 2004;15:61–76.

    Article  CAS  PubMed  Google Scholar 

  59. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2002;2:46–53. https://doi.org/10.1038/nri704.

    Article  CAS  PubMed  Google Scholar 

  60. Pockaj BA, Basu GD, Pathangey LB, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol. 2004;11:328–39.

    Article  PubMed  Google Scholar 

  61. Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188:21–8. https://doi.org/10.4049/jimmunol.1101029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gabrilovich DI, Ishida T, Nadaf S, et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res. 1999;5:2963–70.

    CAS  PubMed  Google Scholar 

  63. Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29:5346–58. https://doi.org/10.1038/onc.2010.292.

    Article  CAS  PubMed  Google Scholar 

  64. Jin D, Fan J, Wang L, et al. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 2010;70(6):2245–55. doi: https://doi.org/10.1158/0008-5472.CAN-09-3109.

  65. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65. https://doi.org/10.1084/jem.20062512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu T, Gabrilovich DI Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res. 2012;18(18):4877–82. doi: https://doi.org/10.1158/1078-0432.CCR-11-2939.;

  67. Bronte V, Kasic T, Gri G, et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 2005;201:1257–68. https://doi.org/10.1084/jem.20042028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13:828–35. https://doi.org/10.1038/nm1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molon B, Ugel S, Del Pozzo F, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208:1949–62. https://doi.org/10.1084/jem.20101956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5:641–54. https://doi.org/10.1038/nri1668.

    Article  CAS  PubMed  Google Scholar 

  71. Kropf P, Baud D, Marshall SE, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol. 2007;37:935–45. https://doi.org/10.1002/eji.200636542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Terness P, Bauer TM, Röse L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 2002;196:447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grimm M, Kim M, Rosenwald A, et al. Tumour-mediated TRAIL-Receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer. 2010;46:2314–23. https://doi.org/10.1016/j.ejca.2010.05.025.

    Article  CAS  PubMed  Google Scholar 

  74. O’Connell J, Bennett MW, O’Sullivan GC, et al. The Fas counterattack: cancer as a site of immune privilege. Immunol Today. 1999;20:46–52.

    Article  PubMed  Google Scholar 

  75. Motz GT, Santoro SP, Wang L-P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607–15. https://doi.org/10.1038/nm.3541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martin-Orozco N, Li Y, Wang Y, et al. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res. 2010;70:9581–90. https://doi.org/10.1158/0008-5472.CAN-10-1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Linsley PS, Bradshaw J, Greene J, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–43.

    Article  CAS  PubMed  Google Scholar 

  78. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2:116–26. https://doi.org/10.1038/nri727.

    Article  CAS  PubMed  Google Scholar 

  79. Onodera T, Jang MH, Guo Z, et al. Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J Immunol. 2009;183:5608–14. https://doi.org/10.4049/jimmunol.0804116.

    Article  CAS  PubMed  Google Scholar 

  80. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4:1206–12. https://doi.org/10.1038/ni1003.

    Article  CAS  PubMed  Google Scholar 

  81. Jacobs JFM, Nierkens S, Figdor CG, et al. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13:e32–42. https://doi.org/10.1016/S1470-2045(11)70155-3.

    Article  CAS  PubMed  Google Scholar 

  82. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD-1 pathway in the immune response. Am J Transplant. 2012;12:2575–87. https://doi.org/10.1111/j.1600-6143.2012.04224.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taube JMJ, Anders RAR, Young GDG, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37. https://doi.org/10.1126/scitranslmed.3003689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pilon-Thomas S, Mackay A, Vohra N, Mulé JJ. Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J Immunol. 2010;184:3442–9. https://doi.org/10.4049/jimmunol.0904114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang B-J, Bao J-J, Wang J-Z, et al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 2011;17:3322–9. https://doi.org/10.3748/wjg.v17.i28.3322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lesterhuis WJ, Punt CJ, Hato SV, et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest. 2011;121:3100–8. https://doi.org/10.1172/JCI43656DS1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44. https://doi.org/10.1182/blood-2008-12-195792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ngiow SF, Teng MWL, Smyth MJ. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res. 2011;71:6567–71. https://doi.org/10.1158/0008-5472.CAN-11-1487.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52. https://doi.org/10.1038/ni1271.

    Article  CAS  PubMed  Google Scholar 

  90. Huard B, Prigent P, Tournier M, et al. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol. 1995;25:2718–21. https://doi.org/10.1002/eji.1830250949.

    Article  CAS  PubMed  Google Scholar 

  91. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78. https://doi.org/10.1007/82_2010_114.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hannier S, Tournier M, Bismuth G, Triebel F. CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol. 1998;161:4058–65.

    CAS  PubMed  Google Scholar 

  93. Hemon P, Jean-Louis F, Ramgolam K, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol. 2011;186:5173–83. https://doi.org/10.4049/jimmunol.1002050.

    Article  CAS  PubMed  Google Scholar 

  94. Liang B, Workman C, Lee J, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180:5916–26.

    Article  CAS  PubMed  Google Scholar 

  95. Sabatos CA, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–10. https://doi.org/10.1038/ni988.

    Article  CAS  PubMed  Google Scholar 

  96. Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–94. https://doi.org/10.1084/jem.20100643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ngiow SF, Scheidt Von B, Akiba H, et al. Anti-TIM3 antibody promotes T Cell IFN-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71:3540–51. https://doi.org/10.1158/0008-5472.CAN-11-0096.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–10. https://doi.org/10.1182/blood-2010-10-310425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27. https://doi.org/10.1158/0008-5472.CAN-11-1620.

    Article  CAS  PubMed  Google Scholar 

  100. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taube JM, Young GD, McMiller TL, et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res. 2015;21(17):3969–76. doi: https://doi.org/10.1158/1078-0432.CCR-15-0244.

  102. Kluger HM, Zito CR, Barr ML, et al. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 2015;21(13):3052–60. doi: https://doi.org/10.1158/1078-0432.CCR-14-3073.

  103. Lyford-Pike S, Peng S, Young GD, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–41. https://doi.org/10.1158/0008-5472.CAN-12-2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dolen Y, Esendagli G. Myeloid leukemia cells with a B7-2(+) subpopulation provoke Th-cell responses and become immuno-suppressive through the modulation of B7 ligands. Eur J Immunol. 2013;43:747–57. https://doi.org/10.1002/eji.201242814.

    Article  CAS  PubMed  Google Scholar 

  105. Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116. https://doi.org/10.1126/scitranslmed.3006504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hosoi A, Matsushita H, Shimizu K, et al. Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism via recruitment of myeloid-derived suppressor cells. Int J Cancer. 2014;134:1810–22. https://doi.org/10.1002/ijc.28506.

    Article  CAS  PubMed  Google Scholar 

  107. Wong JL, Obermajer N, Odunsi K, et al. Synergistic COX2 induction by IFN and TNF self-limits Type-1 immunity in the human tumor microenvironment. Cancer Immunol Res. 2016;4:303–11. https://doi.org/10.1158/2326-6066.CIR-15-0157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71. https://doi.org/10.1038/nature13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McGray AJR, Bernard D, Hallett R, et al. Combined vaccination and immunostimulatory antibodies provides durable cure of murine melanoma and induces transcriptional changes associated with positive outcome in human melanoma patients. Oncoimmunology. 2012;1:419–31.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res. 2007;13:5256–61. https://doi.org/10.1158/1078-0432.CCR-07-0892.

    Article  CAS  PubMed  Google Scholar 

  111. Gajewski TF, Fuertes M, Spaapen R, et al Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2010;23(2):286–92. doi: https://doi.org/10.1016/j.coi.2010.11.013.

  112. Gajewski TF. Molecular profiling of melanoma and the evolution of patient-specific therapy. Semin Oncol. 2011;38:236–42. https://doi.org/10.1053/j.seminoncol.2011.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gajewski TF. Cancer immunotherapy. Mol Oncol. 2012;6:242–50. https://doi.org/10.1016/j.molonc.2012.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gajewski TF, Woo S-R, Zha Y, et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol. 2013;25:268–76. https://doi.org/10.1016/j.coi.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  115. Woo S-R, Corrales L, Gajewski TF. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 2015;36:250–6. https://doi.org/10.1016/j.it.2015.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baniyash M (2006) Chronic inflammation, immunosuppression and cancer: new insights and outlook. Seminars in Cancer Biology.

    Google Scholar 

  117. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506. https://doi.org/10.4049/jimmunol.0802740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Umansky V, Sevko A. Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunol Immunother. 2012;61:275–82. https://doi.org/10.1007/s00262-011-1164-6.

    Article  CAS  PubMed  Google Scholar 

  119. Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol. 2012;22:307–18. https://doi.org/10.1016/j.semcancer.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  120. Baniyash M, Sade-Feldman M, Kanterman J. Chronic inflammation and cancer: suppressing the suppressors. Cancer Immunol Immunother. 2014;63:11–20. https://doi.org/10.1007/s00262-013-1468-9.

    Article  CAS  PubMed  Google Scholar 

  121. Wang J, Yoshida T, Nakaki F, Hiai H. Establishment of NOD-Pdcd1−/−mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A. 2005;102(33):11823–8.

    Google Scholar 

  122. Guleria I. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005;202:231–7. https://doi.org/10.1084/jem.20050019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Habicht AA, Dada SS, Jurewicz MM, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007;179:5211–9.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Y, Chung Y, Bishop C, et al. Regulation of T cell activation and tolerance by PDL2. Proc Natl Acad Sci U S A. 2006;103:11695–700. https://doi.org/10.1073/pnas.0601347103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Matsumoto KK, Inoue HH, Nakano TT, et al. B7-DC regulates asthmatic response by an IFN-gamma-dependent mechanism. J Immunol. 2004;172:2530–41.

    Article  CAS  PubMed  Google Scholar 

  126. Okazaki T, Okazaki I-M, Wang J, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011;208:395–407. https://doi.org/10.1084/jem.20100466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu Y, Shu Q, Gao L, et al. Increased Tim-3 expression on peripheral lymphocytes from patients with rheumatoid arthritis negatively correlates with disease activity. Clin Immunol. 2010;137:288–95. https://doi.org/10.1016/j.clim.2010.07.012.

    Article  CAS  PubMed  Google Scholar 

  128. Keir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol. 2007;179:5064–70.

    Article  CAS  PubMed  Google Scholar 

  129. Dalton DK, Wittmer S. Nitric-oxide-dependent and independent mechanisms of protection from CNS inflammation during Th1-mediated autoimmunity: evidence from EAE in iNOS KO mice. J Neuroimmunol. 2005;160:110–21. https://doi.org/10.1016/j.jneuroim.2004.11.004.

    Article  CAS  PubMed  Google Scholar 

  130. Yaswen L, Kulkarni AB, Fredrickson T, et al. Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse. Blood. 1996;87:1439–45.

    CAS  PubMed  Google Scholar 

  131. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9. https://doi.org/10.1038/359693a0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pallotta MTM, Orabona CC, Volpi CC, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol. 2011;12:870–8. https://doi.org/10.1038/ni.2077.

    Article  CAS  PubMed  Google Scholar 

  133. Fallarino FF, Grohmann UU, Puccetti PP. Indoleamine 2,3-dioxygenase: From catalyst to signaling function. Eur J Immunol. 2012;42:1932–7. https://doi.org/10.1002/eji.201242572.

    Article  CAS  PubMed  Google Scholar 

  134. Vermeire KK, Heremans HH, Vandeputte MM, et al. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol. 1997;158:5507–13.

    CAS  PubMed  Google Scholar 

  135. Ferber IA, Brocke S, Taylor-Edwards C. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol. 1996;156(1):5–7.

    Google Scholar 

  136. Krakowski MM, Owens TT. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol. 1996;26:1641–6. https://doi.org/10.1002/eji.1830260735.

    Article  CAS  PubMed  Google Scholar 

  137. Tran EHE, Prince ENE, Owens TT. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol. 2000;164:2759–68.

    Article  CAS  PubMed  Google Scholar 

  138. Ring GHG, Dai ZZ, Saleem SS, et al. Increased susceptibility to immunologically mediated glomerulonephritis in IFN-gamma-deficient mice. J Immunol. 1999;163:2243–8.

    CAS  PubMed  Google Scholar 

  139. Zaidi MR, Merlino G. The two faces of interferon- in cancer. Clin Cancer Res. 2011;17:6118–24. https://doi.org/10.1158/1078-0432.CCR-11-0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang JC, Hughes M, Kammula U, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30:825–30. https://doi.org/10.1097/CJI.0b013e318156e47e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hodi FSF, O’Day SJS, McDermott DFD, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Robert CC, Thomas LL, Bondarenko II, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26. https://doi.org/10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  143. Lynch TJT, Bondarenko II, Luft AA, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30:2046–54. https://doi.org/10.1200/JCO.2011.38.4032.

    Article  CAS  PubMed  Google Scholar 

  144. Brahmer JRJ, Drake CGC, Wollner II, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75. https://doi.org/10.1200/JCO.2009.26.7609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Topalian SLS, Hodi FSF, Brahmer JRJ, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brahmer JRJ, Tykodi SSS, Chow LQML, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. https://doi.org/10.1056/NEJMoa1200694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. doi: https://doi.org/10.1056/NEJMoa1501824.

  148. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. https://doi.org/10.1126/science.aaa8172.

    Article  CAS  PubMed  Google Scholar 

  149. Postow MA, Chesney J, Pavlick AC, et al (2015) Nivolumab and Ipilimumab versus Ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi: https://doi.org/10.1056/NEJMoa1414428.

  150. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107:4275–80. https://doi.org/10.1073/pnas.0915174107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73:3591–603. https://doi.org/10.1158/0008-5472.CAN-12-4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Winograd R, Byrne KT, Evans RA, et al. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res. 2015;3:399–411. https://doi.org/10.1158/2326-6066.CIR-14-0215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. doi: https://doi.org/10.1056/NEJMoa1504030.

  154. Baitsch L, Legat A, Barba L, et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS One. 2012;7:e30852. https://doi.org/10.1371/journal.pone.0030852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107:7875–80. https://doi.org/10.1073/pnas.1003345107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37. https://doi.org/10.1038/ni.1679.

    Article  CAS  PubMed  Google Scholar 

  157. Fourcade J, Sun Z, Pagliano O, et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8+ T cells induced by melanoma vaccines. Cancer Res. 2014;74:1045–55. https://doi.org/10.1158/0008-5472.CAN-13-2908.

    Article  CAS  PubMed  Google Scholar 

  158. Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7. https://doi.org/10.1038/nature14292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Robert McGray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGray, A.J.R., Bramson, J. (2017). Adaptive Resistance to Cancer Immunotherapy. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_14

Download citation

Publish with us

Policies and ethics