Skip to main content

Triple-Crossing 2.5D Convolutional Neural Network for Detecting Neuronal Arbours in 3D Microscopic Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

The automatic analysis of the 3D optical microscopic images containing neuron cells remains one of the central challenges in the modern computational neuroscience. The varying image qualities make the accurate detection of the curvilinear neuronal arbours elusive. The high computational cost raised by large 3D image volumes also makes the conventional filter-bank learning methods impractical. We present a novel Triple-Crossing (TC) 2.5D convolutional neural network to detect the neuronal arbours in large 3D microscopic volumes with a reasonable computational cost. The network is trained to output a regression map that indicates the presence of the neuronal arbours. The proposed methods can be used as a pre-processing step in an automated neuronal circuit reconstruction pipeline, which enables the collection of large-scale neuron morphological datasets. In our experiments, we show that the proposed methods could effectively eliminate dense background noises and fix the gaps along neuronal arbours. The proposed methods could also outperform the original 2.5D neural network regarding the training efficiency as well as the generalisation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arxiv:1603.04467 (2015)

  2. Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 526–533. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_66

    Chapter  Google Scholar 

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arxiv:1511.07289 (2015)

  4. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  5. Hannink, J., Duits, R., Bekkers, E.: Crossing-preserving multi-scale vesselness. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 603–610. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_75

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  8. Pawley, J.B.: Fundamental limits in confocal microscopy. In: Pawley, J.B. (ed.) Handbook of Biological Confocal Microscopy, pp. 20–42. Springer, Boston (2006)

    Chapter  Google Scholar 

  9. Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., Ascoli, G.A.: BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87(2), 252–256 (2015)

    Article  Google Scholar 

  10. Roth, H.R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Kim, L., Summers, R.M.: Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 35(5), 1170–1181 (2016)

    Article  Google Scholar 

  11. Sintorn, I.M., Bischof, L., Jackway, P., Haggarty, S., Buckley, M.: Gradient based intensity normalization. J. Microsc. 240(3), 249–258 (2010)

    Article  MathSciNet  Google Scholar 

  12. Sironi, A., Turetken, E., Lepetit, V., Fua, P.: Multiscale centerline detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1327–1341 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, S., Zhang, D., Song, Y., Peng, H., Cai, W. (2017). Triple-Crossing 2.5D Convolutional Neural Network for Detecting Neuronal Arbours in 3D Microscopic Images. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics