Skip to main content

G Protein Beta/Gamma

  • Reference work entry
  • First Online:

Synonyms

G beta; G gamma; G protein beta; G protein gamma; Gb; Gnb; Gng; Guanine nucleotide binding protein; Guanine nucleotide binding protein (G protein), gamma; Guanine nucleotide binding protein, beta; Guanine nucleotide binding protein, beta polypeptide; Guanine nucleotide binding protein, gamma

Isoforms

Five different isoforms of Gbeta have been identified, numbered 1 to 5. Ggamma isoforms are numbered from 1 to 5 and 7 to 13.

G protein beta5 can also be known as Flailer, Flail, Flr, Hug.

G protein gamma2 is also known as G protein gamma6.

Historical Background

G protein β and γ subunits were first discovered as components of G proteins over 30 years ago. Since then, their role has evolved significantly from simple inhibitors of G protein α subunits to independent signaling regulators modulating a number of different cellular effectors. Although several isoforms of Gα were cloned in the early 1980s, it was not until 1986 that the transducin Gβ subunit was cloned (Fong et al. 1986...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bermak JC, Li M, et al. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol. 2001;3(5):492–8.

    Article  PubMed  CAS  Google Scholar 

  • Bonacci TM, Ghosh M, et al. Regulatory interactions between the amino terminus of G-protein betagamma subunits and the catalytic domain of phospholipase Cbeta2. J Biol Chem. 2005;280(11):10174–81.

    Article  PubMed  CAS  Google Scholar 

  • Cabrera JL, de Freitas F, et al. Identification of the Gbeta5-RGS7 protein complex in the retina. Biochem Biophys Res Commun. 1998;249(3):898–902.

    Article  PubMed  CAS  Google Scholar 

  • Casey LM, Pistner AR, et al. Small molecule disruption of G beta gamma signaling inhibits the progression of heart failure. Circ Res. 2010;107(4):532–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167–203.

    Article  PubMed  CAS  Google Scholar 

  • Colombo MI, Inglese J, et al. Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic. J Biol Chem. 1995;270(41):24564–71.

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol. 2002;12(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  • Dessal AL, Prades R, et al. Rational design of a selective covalent modifier of G protein βγ subunits. Mol Pharmacol. 2011;79(1):24–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson JG, Kahn RA, et al. Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science. 1991;254(5035):1197–9.

    Article  PubMed  CAS  Google Scholar 

  • Dupre DJ, Robitaille M, et al. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. J Biol Chem. 2006;281(45):34561–73.

    Article  PubMed  CAS  Google Scholar 

  • Dupre DJ, Robitaille M, et al. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for Ggamma subunits before assembly with Gbeta. J Biol Chem. 2007;282(18):13703–15.

    Article  PubMed  CAS  Google Scholar 

  • Dupre DJ, Robitaille M, et al. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol. 2009;49:31–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fairbrother WJ, Christinger HW, et al. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry. 1998;37(51):17754–64.

    Article  PubMed  CAS  Google Scholar 

  • Fong HK, Hurley JB, et al. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci USA. 1986;83(7):2162–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hippe HJ, Luedde M, et al. Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein beta gamma dimer complexes. Circ Res. 2007;100(8):1191–9.

    Article  PubMed  CAS  Google Scholar 

  • Hurley JB, Fong HK, et al. Isolation and characterization of a cDNA clone for the gamma subunit of bovine retinal transducin. Proc Natl Acad Sci USA. 1984;81(22):6948–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Illenberger D, Walliser C, et al. Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J Biol Chem. 2003;278(5):3006–14.

    Article  PubMed  CAS  Google Scholar 

  • Jezyk MR, Snyder JT, et al. Crystal structure of Rac1 bound to its effector phospholipase C-beta2. Nat Struct Mol Biol. 2006;13(12):1135–40.

    Article  PubMed  CAS  Google Scholar 

  • Koch WJ, Rockman HA, et al. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995;268(5215):1350–3.

    Article  PubMed  CAS  Google Scholar 

  • Ktistakis NT, Linder ME, et al. Action of brefeldin A blocked by activation of a pertussis-toxin-sensitive G protein. Nature. 1992;356(6367):344–6.

    Article  PubMed  CAS  Google Scholar 

  • Kuang Y, Wu Y, et al. Identification of a phospholipase C beta2 region that interacts with Gbeta-gamma. Proc Natl Acad Sci USA. 1996;93(7):2964–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambright DG, Sondek J, et al. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996;379(6563):311–9.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc PC, Auger-Messier M, et al. A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling. Endocrinology. 2002;143(12):4702–10.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann DM, Seneviratne AM, et al. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol Pharmacol. 2008;73(2):410–8.

    Article  PubMed  CAS  Google Scholar 

  • Lukov GL, Baker CM, et al. Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex. J Biol Chem. 2006;281(31):22261–74.

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM. Composition and function of g protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J Mol Neurosci. 2005;26(2–3):253–64.

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Wolfson HJ, et al. Protein functional epitopes: hot spots, dynamics and combinatorial libraries. Curr Opin Struct Biol. 2001;11(3):364–9.

    Article  PubMed  CAS  Google Scholar 

  • Mahon MJ, Bonacci TM, et al. A docking site for G protein betagamma subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways. Mol Endocrinol. 2006;20(1):136–46.

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Ghosh M, et al. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells. Mol Pharmacol. 2005;68(1):129–36.

    PubMed  CAS  Google Scholar 

  • Martin-Benito J, Bertrand S, et al. Structure of the complex between the cytosolic chaperonin CCT and phosducin-like protein. Proc Natl Acad Sci USA. 2004;101(50):17410–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathews JL, Smrcka AV, et al. A novel Gbetagamma-subunit inhibitor selectively modulates mu-opioid-dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J Neurosci. 2008;28(47):12183–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okae H, Iwakura Y. Neural tube defects and impaired neural progenitor cell proliferation in Gbeta1-deficient mice. Dev Dyn. 2010;239(4):1089–101.

    Article  PubMed  CAS  Google Scholar 

  • Rebois RV, Robitaille M, et al. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci. 2006;119(Pt 13):2807–18.

    Article  PubMed  CAS  Google Scholar 

  • Romoser V, Ball R, et al. Phospholipase C beta2 association with phospholipid interfaces assessed by fluorescence resonance energy transfer. G protein betagamma subunit-mediated translocation is not required for enzyme activation. J Biol Chem. 1996;271(41):25071–8.

    Article  PubMed  CAS  Google Scholar 

  • Runnels LW, Jenco J, et al. Membrane binding of phospholipases C-beta 1 and C-beta 2 is independent of phosphatidylinositol 4,5-bisphosphate and the alpha and beta gamma subunits of G proteins. Biochemistry. 1996;35(51):16824–32.

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Steinberg SF. G protein betagamma dimer expression in cardiomyocytes: developmental acquisition of Gbeta3. Biochem Biophys Res Commun. 2008;368(2):408–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sachdev P, Menon S, et al. G protein beta gamma subunit interaction with the dynein light-chain component Tctex-1 regulates neurite outgrowth. EMBO J. 2007;26(11):2621–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sankaran B, Osterhout J, et al. Identification of a structural element in phospholipase C beta2 that interacts with G protein betagamma subunits. J Biol Chem. 1998;273(12):7148–54.

    Article  PubMed  CAS  Google Scholar 

  • Schwaninger R, Plutner H, et al. Multiple GTP-binding proteins regulate vesicular transport from the ER to Golgi membranes. J Cell Biol. 1992;119(5):1077–96.

    Article  PubMed  CAS  Google Scholar 

  • Schwindinger WF, Betz KS, et al. Loss of G protein gamma 7 alters behavior and reduces striatal alpha(olf) level and cAMP production. J Biol Chem. 2003;278(8):6575–9.

    Article  PubMed  CAS  Google Scholar 

  • Scott JK, Huang SF, et al. Evidence that a protein-protein interaction ‘hot spot’ on heterotrimeric G protein betagamma subunits is used for recognition of a subclass of effectors. EMBO J. 2001;20(4):767–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sondek J, Bohm A, et al. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996;379(6563):369–74.

    Article  PubMed  CAS  Google Scholar 

  • Spring DJ, Neer EJ. A 14-amino acid region of the G protein gamma subunit is sufficient to confer selectivity of gamma binding to the beta subunit. J Biol Chem. 1994;269(36):22882–6.

    PubMed  CAS  Google Scholar 

  • Stow JL, Heimann K. Vesicle budding on Golgi membranes: regulation by G proteins and myosin motors. Biochim Biophys Acta. 1998;1404(1–2):161–71.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Dowal L, et al. The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core. J Biol Chem. 2000;275(11):7466–9.

    Article  PubMed  CAS  Google Scholar 

  • Wieland T. Interaction of nucleoside diphosphate kinase B with heterotrimeric G protein betagamma dimers: consequences on G protein activation and stability. Naunyn Schmiedebergs Arch Pharmacol. 2007;374(5–6):373–83.

    Article  PubMed  CAS  Google Scholar 

  • Willardson BM, Howlett AC. Function of phosducin-like proteins in G protein signaling and chaperone-assisted protein folding. Cell Signal. 2007;19(12):2417–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams ML, Hata JA, et al. Targeted beta-adrenergic receptor kinase (betaARK1) inhibition by gene transfer in failing human hearts. Circulation. 2004;109(13):1590–3.

    Article  PubMed  CAS  Google Scholar 

  • Witherow DS, Wang Q, et al. Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem. 2000;275(32):24872–80.

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Benovic JL, et al. Receptor docking sites for G-protein betagamma subunits. Implications for signal regulation. J Biol Chem. 1998;273(13):7197–200.

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bogatkevich GS, et al. Identification of Gbetagamma binding sites in the third intracellular loop of the M(3)-muscarinic receptor and their role in receptor regulation. J Biol Chem. 2000;275(12):9026–34.

    Article  PubMed  CAS  Google Scholar 

  • Yost EA, Mervine SM, et al. Live cell analysis of G protein beta5 complex formation, function, and targeting. Mol Pharmacol. 2007;72(4):812–25.

    Article  PubMed  CAS  Google Scholar 

  • Yuan C, Sato M, et al. Signaling by a non-dissociated complex of G protein betagamma and alpha subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. J Biol Chem. 2007;282(27):19938–47.

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Nalbant P, et al. Signaling requirements for translocation of P-Rex1, a key Rac2 exchange factor involved in chemoattractant-stimulated human neutrophil function. J Leukoc Biol. 2007;81(4):1127–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis J. Dupré .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dupré, D.J., Hébert, T.E. (2018). G Protein Beta/Gamma. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_75

Download citation

Publish with us

Policies and ethics