Skip to main content

Rab8

  • Reference work entry
  • First Online:
  • 724 Accesses

Synonyms

Dmel; Mel transforming oncogene (RAB8 homolog); MEL; MGC124948; Oncogene c-mel; Rab8a; Ras-related Rab8; Ras-associated protein RAB8; Ras-related protein Rab-8A

Historical Background

Ras-like Rab GTPases (guanosine triphosphatases) are regulators of membrane trafficking. Identification of two Ras-like GTPases, Sec4p and Ypt1p, which are involved in regulating secretion in yeast, rapidly led to the discovery of additional small GTPases in mammalian cells. Rab8 was among the first group of mammalian Rab GTPases to be identified and is a close functional and sequence homolog of the yeast proteins Ypt2 and Sec4p. A second isoform, Rab8b (b for basophil), was cloned from mast cells in 1996. Rab8b shares 83% sequence identity with MEL/Rab8 (now also termed Rab8a) primarily over amino acids 1–152. The two isoforms display significant overlap in tissue distribution (coexpressed in liver, skeletal muscle, and testis), though Rab8 is much more abundant in lung and kidney, while Rab8b is...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angers CG, Merz AJ. New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol. 2011;22:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A, Garcia MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 2007;26:1499–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi ZL, et al. Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice. Hum Mol Genet. 2010;19:2606–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cramm-Behrens CI, Dienst M, Jacob R. Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic. 2008;9:2206–20.

    Article  PubMed  CAS  Google Scholar 

  • del Toro D, Alberch J, Lazaro-Dieguez F, Martin-Ibanez R, Xifro X, Egea G, Canals JM. Mutant huntingtin impairs post-golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the golgi apparatus. Mol Biol Cell. 2009;20:1478–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong C, Yang L, Zhang X, Gu H, Lam ML, Claycomb WC, Xia H, Wu G. Rab8 interacts with distinct motifs in alpha2B- and beta2-adrenergic receptors and differentially modulates their transport. J Biol Chem. 2010;285:20369–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faust F, Gomez-Lazaro M, Borta H, Agricola B, Schrader M. Rab8 is involved in zymogen granule formation in pancreatic acinar AR42J cells. Traffic. 2008;9:964–79.

    Article  PubMed  CAS  Google Scholar 

  • Follit JA, Li L, Vucica Y, Pazour GJ. The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. J Cell Biol. 2010;188:21–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grigoriev I, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol. 2011;21:967–74.

    Article  PubMed  CAS  Google Scholar 

  • Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpaa K, Laakkonen P, Peranen J. Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci. 2006;119:4866–77.

    Article  PubMed  CAS  Google Scholar 

  • Hertzog M, Chavrier P. Cell polarity during motile processes: keeping on track with the exocyst complex. Biochem J. 2011;433:403–9.

    Article  PubMed  CAS  Google Scholar 

  • Ishikura S, Klip A. Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am J Phys Cell Phys. 2008;295:C1016–25.

    Article  CAS  Google Scholar 

  • Jacobs DT, Weigert R, Grode KD, Donaldson JG, Cheney RE. Myosin Vc is a molecular motor that functions in secretory granule trafficking. Mol Biol Cell. 2009;20:4471–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan OI, et al. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J Cell Sci. 2010;123:3966–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Krishnaswami SR, Gleeson JG. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet. 2008;17:3796–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knoblauch A, Will C, Goncharenko G, Ludwig S, Wixler V. The binding of Mss4 to alpha-integrin subunits regulates matrix metalloproteinase activation and fibronectin remodeling. FASEB J. 2007;21:497–510.

    Article  PubMed  CAS  Google Scholar 

  • Knodler A, Feng S, Zhang J, Zhang X, Das A, Peranen J, Guo W. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci USA. 2010;107:6346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 2009a;28:183–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D. Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments. J Cell Sci. 2009b;122:2003–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nachury MV, Seeley ES, Jin H. Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol. 2010;26:59–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagabhushana A, Chalasani ML, Jain N, Radha V, Rangaraj N, Balasubramanian D, Swarup G. Regulation of endocytic trafficking of transferrin receptor by optineurin and its impairment by a glaucoma-associated mutant. BMC Cell Biol. 2010;11:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat Cell Biol. 2008;10:437–44.

    Article  PubMed  CAS  Google Scholar 

  • Rahajeng J, Giridharan SS, Cai B, Naslavsky N, Caplan S. Important relationships between Rab and MICAL proteins in endocytic trafficking. World J Biol Chem. 2010;1:254–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Randhawa VK, Ishikura S, Talior-Volodarsky I, Cheng AW, Patel N, Hartwig JH, Klip A. GLUT4 vesicle recruitment and fusion are differentially regulated by Rac, AS160, and Rab8A in muscle cells. J Biol Chem. 2008;283:27208–19.

    Article  PubMed  CAS  Google Scholar 

  • Roland JT, Lapierre LA, Goldenring JR. Alternative splicing in class V myosins determines association with Rab10. J Biol Chem. 2009;284:1213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roland JT, Bryant DM, Datta A, Itzen A, Mostov KE, Goldenring JR. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc Natl Acad Sci USA. 2011;108:2789–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruemmele FM, et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum Mutat. 2010;31:544–51.

    Article  PubMed  CAS  Google Scholar 

  • Sato T, et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature. 2007;448:366–9.

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K. Rab10 is involved in basolateral transport in polarized Madin-Darby canine kidney cells. Traffic. 2007;8:47–60.

    Article  PubMed  CAS  Google Scholar 

  • Shisheva A, Chinni SR, DeMarco C. General role of GDP dissociation inhibitor 2 in membrane release of Rab proteins: modulations of its functional interactions by in vitro and in vivo structural modifications. Biochemistry. 1999;38:11711–21.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Bilan PJ, Liu Z, Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci USA. 2010;107:19909–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wandinger-Ness A, Deretic D. Rab8a. UCSD nature molecule pages. 2008.

    Google Scholar 

  • Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone 2nd VH, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell. 2011;22:3289–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westlake CJ, et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci USA. 2011;108:2759–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasuda T, et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab. 2010;12:117–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge fellowships from NCRR INBRE 5P20RR016480 and NIGMS 1K12GM088021 to HW and research support from NIDDK DK50141 to AWN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather H. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ward, H.H., Wandinger-Ness, A. (2018). Rab8. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_19

Download citation

Publish with us

Policies and ethics