Skip to main content

RhoA

  • Reference work entry
  • First Online:
  • 521 Accesses

Synonyms

Aplysia Ras-related homolog 12; ARH12; ARHA; Ras homolog family, member A

Historical Background

RhoA was identified as a homolog of small GTPase Ras in a study using a cDNA library from mollusk Aplysia, hence its first name Aplysia Ras-related Homolog (ARH) 12 (Madaule and Axel 1985). RhoA, along with very related RhoB and RhoC, constitute the Rho subfamily of GTPases within the superfamily of Ras-related small GTPases and are found in all eukaryotic cells (Jaffe and Hall 2005). RhoA gene is located on chromosome 1 3p21.3 and, given that it is longer and contains more exons and introns, has been suggested to be the ancestor of both RhoC and RhoB (Wheeler and Ridley 2004), which evolved as duplication (RhoC) or reverse transcription (RhoB) from RhoA (Boureux et al. 2007; Wheeler and Ridley 2004). In line with this hypothesis, orthologs of RhoA, but not RhoC or RhoB, are found in nonvertebrates (Boureux et al. 2007). At the protein level, RhoA and RhoC are around 90% identical,...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.

    Article  PubMed  CAS  Google Scholar 

  • Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol. 2007;24:203–16.

    Article  PubMed  CAS  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays. 2007;29:356–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai A, Zhou Y, Li L. Rho-GTPase and atherosclerosis: pleiotropic effects of statins. J Am Heart Assoc. 2015;4. pii: e002113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    Article  PubMed  CAS  Google Scholar 

  • Cantelli G, Orgaz JL, Rodriguez-Hernandez I, Karagiannis P, Maiques O, Matias-Guiu X, Nestle FO, Marti RM, Karagiannis SN, Sanz-Moreno V. TGF-beta-induced transcription sustains amoeboid melanoma migration and dissemination. Curr Biol. 2015;25:2899–914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY, Wu J, Nakayama KI, Kang HY, Huang HY, et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol. 2010;12:457–67.

    Article  PubMed  CAS  Google Scholar 

  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269–309.

    Article  PubMed  CAS  Google Scholar 

  • Cortes JR, Palomero T. The curious origins of angioimmunoblastic T-cell lymphoma. Curr Opin Hematol. 2016;23:434–43.

    Article  PubMed  CAS  Google Scholar 

  • Croft DR, Olson MF. Transcriptional regulation of Rho GTPase signaling. Transcription. 2011;2:211–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, LoGrasso PV, Defert O, Li R. Rho Kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem. 2016;59:2269–300.

    Article  PubMed  CAS  Google Scholar 

  • Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol. 2003;15:590–7.

    Article  PubMed  CAS  Google Scholar 

  • Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400.

    Article  PubMed  CAS  Google Scholar 

  • Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17:496–510.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    Article  CAS  PubMed  Google Scholar 

  • Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem. 1999;68:459–86.

    Article  PubMed  CAS  Google Scholar 

  • Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, Yamamoto S, Tatsuno K, Katoh H, Watanabe Y, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol. 1993;120:1187–95.

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jorgensen C, Guichard S, Marshall CJ. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife. 2016;5:e12994.

    Article  PubMed  Google Scholar 

  • Madaule P, Axel R. A novel ras-related gene family. Cell. 1985;41:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Mardakheh FK, Self A, Marshall CJ. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129(24):4466–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol. 2012;8:165–77.

    Article  PubMed  CAS  Google Scholar 

  • Miralles F, Posern G, Zaromytidou AI, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329–42.

    Article  PubMed  CAS  Google Scholar 

  • Mizuarai S, Yamanaka K, Kotani H. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res. 2006;66:6319–26.

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 2009;28:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D, Lemichez E, Boquet P, Madara JL. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA. 1995;92:10629–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohgushi M, Minaguchi M, Sasai Y. Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell. 2015;17:448–61.

    Article  PubMed  CAS  Google Scholar 

  • Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269:1270–2.

    Article  PubMed  CAS  Google Scholar 

  • Orgaz JL, Herraiz C, Sanz-Moreno V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases. 2014a;5:e29019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, Albrengues J, Nestle FO, Ridley AJ, Gaggioli C, et al. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun. 2014b;5:4255.

    Article  PubMed  CAS  Google Scholar 

  • Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, Carpenter Z, Abate F, Allegretta M, Haydu JE, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46:166–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol. 2017;11(1):5–27. Epub 2016 Dec 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol. 2017;241(2):123–39. Epub 2016 Nov 11.

    Article  PubMed  CAS  Google Scholar 

  • Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006;440:1069–72.

    Article  PubMed  CAS  Google Scholar 

  • Rajakyla EK, Vartiainen MK. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases. 2014;5:e27539.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 2006;16:522–9.

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70:389–99.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res. 2016;5. pii: F1000.

    Article  CAS  Google Scholar 

  • Sadok A, Marshall CJ. Rho GTPases: masters of cell migration. Small GTPases. 2014;5:e29710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, Marshall CJ. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272–84.

    Article  PubMed  CAS  Google Scholar 

  • Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7:737–49.

    Article  PubMed  CAS  Google Scholar 

  • Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:133–42.

    Article  PubMed  Google Scholar 

  • Sahai E, Alberts AS, Treisman R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 1998;17:1350–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, Muto H, Tsuyama N, Sato-Otsubo A, Okuno Y, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5.

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008;135:510–23.

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Feral CC, Cook M, et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20:229–45.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer A, Reinhard NR, Hordijk PL. Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases. 2014;5:6.

    Article  PubMed  Google Scholar 

  • Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol. 2013;92:303–15.

    Article  PubMed  CAS  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10:778–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301:43–9.

    Article  PubMed  CAS  Google Scholar 

  • Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, Kim SC, Lee B, Rho K, Lee JE, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:371–5.

    Article  PubMed  CAS  Google Scholar 

  • Zegers MM, Friedl P. Rho GTPases in collective cell migration. Small GTPases. 2014;5:e28997.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Sanz-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orgaz, J.L., Sanz-Moreno, V. (2018). RhoA. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101793

Download citation

Publish with us

Policies and ethics