Skip to main content

Thermal/Electrical Injuries

  • Chapter
  • First Online:
Veterinary Forensic Pathology, Volume 2

Abstract

The skin is the primary barrier to the external insults an organism may encounter. It is a resilient and durable structure with many defense characteristics. The stratum corneum and adnexal covering (feathers, fur, or scales) offer a relative amount of armor against corrosive agents, extremes of temperature, and sharp forces. Its elasticity allows it to stretch and resist tearing when met with abrasive or compressive forces. This defensive coating, however, is not invulnerable, and its protection may be breached by excesses of heat or force that overwhelm its barrier capacity. Flames, chemicals, electrical currents, and hot liquids may breach the skin barrier causing burns and scalds. These events may also directly or indirectly affect other systems in the body, resulting in respiratory compromise, cardiac insufficiency, or multiple organ failure. A cutaneous lesion should prompt the veterinary pathologist or clinician to look below the surface for other manifestations or sequelae to skin injury. This chapter will focus on thermal and chemical insults to the skin and the possible parallel and subsequent changes in other organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tintinalli JE, Stapczynski JS, Ma OJ, Yealy DM, Meckler GD, Cline D, editors. Tintinalli’s emergency medicine: a comprehensive study guide. 8th ed. USA: McGraw-Hill Education; 2016.

    Google Scholar 

  2. Jackson D. The diagnosis of the depth of burning. Br J Surg. 1953;40:588.

    Article  CAS  PubMed  Google Scholar 

  3. Üzün İ, Akyıldız E, İnanıcı M. Histopathological differentiation of skin lesions caused by electrocution, flame burns and abrasion. Forensic Sci Int. 2008;178:157–61. https://doi.org/10.1016/j.forsciint.2008.03.012.

    Article  PubMed  Google Scholar 

  4. Kagan R. Electrocution of raptors on power lines: a review of necropsy methods and findings. Vet Pathol. 2016;53:1030–6. https://doi.org/10.1177/0300985816646431.

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald K, Flood A. Smoke inhalation. Clin Tech Small Anim Pract. 2006;21:205–14. https://doi.org/10.1053/j.ctsap.2006.10.009.

    Article  PubMed  Google Scholar 

  6. Stern A, Lewis R, Thompson K. Toxic smoke inhalation in fire victim dogs. Vet Pathol. 2014;51:1165–7. https://doi.org/10.1177/0300985813519134.

    Article  CAS  PubMed  Google Scholar 

  7. Stoll S, Roider G, Keil W. Concentrations of cyanide in blood samples of corpses after smoke inhalation of varying origin. Int J Legal Med. 2016. https://doi.org/10.1007/s00414-016-1426-0.

  8. Shin B, Kim M, Yoo H, Kim S, Lee J, Jeon K. Tracheobronchial polyps following thermal inhalation injury. Tuberc Respir Dis. 2014;76:237–9. https://doi.org/10.4046/trd.2014.76.5.237.

    Article  Google Scholar 

  9. Choi IS. Carbon monoxide poisoning: systemic manifestations and complications. J Korean Med Sci. 2001;16:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis R, Johnson R, Canfield D. An accurate method for the determination of carboxyhemoglobin in postmortem blood using GC-TCD. J Anal Toxicol. 2004;28:59–62. https://doi.org/10.1093/jat/28.1.59.

    Article  CAS  PubMed  Google Scholar 

  11. Kent M, Creevy K, deLahunta A. Clinical and neuropathological findings of acute carbon monoxide toxicity in Chihuahuas following smoke inhalation. J Am Anim Hosp Assoc. 2010;46:259–64. https://doi.org/10.5326/0460259.

    Article  PubMed  Google Scholar 

  12. Dettmeyer RB. Forensic histopathology: fundamentals and perspectives. Berlin: Springer-Verlag; 2011.

    Book  Google Scholar 

  13. Miller K, Hunt R, Chu J, Meehan S, Stein J. Erythema Ab igne. Dermatol Online J. 2011;17:28.

    PubMed  Google Scholar 

  14. Walder EJ, Hargis AM. Chronic moderate heat dermatitis (erythema ab igne) in five dogs, three cats and one silvered langur. Vet Dermatol. 2002;13(5):283–92.

    Article  PubMed  Google Scholar 

  15. Maguire S, Moynihan S, Mann M, Potokar T, Kemp AM. A systematic review of the features that indicate intentional scalds in children. Burns. 2008;34:1072–81. https://doi.org/10.1016/j.burns.2008.02.011.

    Article  CAS  PubMed  Google Scholar 

  16. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14:12222–48. https://doi.org/10.3390/ijms140612222.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lopes D, McMahon S. Ultraviolet radiation on the skin: a painful experience? CNS Neurosci Ther. 2016;22:118–26. https://doi.org/10.1111/cns.12444.

    Article  PubMed  Google Scholar 

  18. Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki K, Mitsutake N, Saenko V, Yamashita S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis. Cancer Sci. 2015;106:127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. International Agency for Research on Cancer (2000) Evaluation of carcinogenic risks to humans. Ionizing radiation. Part 1: X- and Gamma (g)-radiation, and neutrons. Lyon, France.

    Google Scholar 

  21. Little M. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat Environ Biophys. 2013;52:435–49.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reedy LM, Clubb FJ Jr. Microwave burn in a toy poodle: a case report. J Am Anim Hosp Assoc. 1991;27:497–500.

    Google Scholar 

  23. Jeschke MG, Pinto R, Kraft R, Nathens AB, Finnerty CC, Gamelli RL, Gibran NS, Klein MB, Arnoldo BD, Tompkins RG, Herndon DN. Morbidity and survival probability in burn patients in modern burn care. Crit Care Med. 2015;43(4):808–15.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schwacha M, Chaudry I. The cellular basis of post-burn immunosuppression: macrophages and mediators. Int J Mol Med. 2002;10:239–43. https://doi.org/10.3892/ijmm.10.3.23.

    CAS  PubMed  Google Scholar 

  25. Zhou J, Zhang X, Liang P, Ren L, Zeng J, Zhang M, Zhang P, Huang X. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol Open. 2016;5:bio.014910. https://doi.org/10.1242/bio.014910.

    Article  Google Scholar 

  26. Porter C, Herndon D, Sidossis L, Børsheim E. The impact of severe burns on skeletal muscle mitochondrial function. Burns. 2013;39:1039–47. https://doi.org/10.1016/j.burns.2013.03.018.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guillory A, Clayton R, Herndon D, Finnerty C. Cardiovascular dysfunction following burn injury: what we have learned from rat and mouse models. Int J Mol Sci. 2016;17:53. https://doi.org/10.3390/ijms17010053.

    Article  PubMed Central  Google Scholar 

  28. Summers J, Ziembicki J, Corcos A, Peitzman A, Billiar T, Sperry J. Characterization of sex dimorphism following severe thermal injury. J Burn Care Res. 2014;35:484. https://doi.org/10.1097/BCR.0000000000000018.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Johl H, Olshansky A, Beydoun S, Rison R. Cervicothoracic spinal cord and pontomedullary injury secondary to high-voltage electrocution: a case report. J Med Case Rep. 2012;6. https://doi.org/10.1186/1752-1947-6-296.

  30. Reisner AD. Possible mechanisms for delayed neurological damage in lightning and electrical injury. Brain Inj. 2013;27:565–9.

    Article  PubMed  Google Scholar 

  31. Viner T, Kagan R, Johnson J. Using an alternate light source to detect electrically singed feathers and hair in a forensic setting. Forensic Sci Int. 2014;234:e25–9. https://doi.org/10.1016/j.forsciint.2013.10.033.

    Article  PubMed  Google Scholar 

  32. Jacobsen H. Electrically induced deposition of metal on the human skin. Forensic Sci Int. 1997;90:85–92.

    Google Scholar 

  33. Rakov VA, Uman MA. Lightning: physics and effects. Cambridge: University Press; 2003.

    Book  Google Scholar 

  34. Wetli CV. Keraunopathology: an analysis of 45 fatalities. Am J Forensic Med Pathol. 1996;17:89–98.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw GE, Neiland KA. Electrocution of a caribou herd caused by lightning in central Alaska. J Wildl Dis. 1973;9:311–3.

    Article  CAS  PubMed  Google Scholar 

  36. Van Alstine W, Widmer W. Lightning injury in an outdoor swine herd. J Vet Diagn Invest. 2003;15:289–91. https://doi.org/10.1177/104063870301500313.

    Article  PubMed  Google Scholar 

  37. Sharma B, Singhal P, Chugh K. Intravascular haemolysis and acute renal failure following potassium dichromate poisoning. Postgrad Med J. 1978;54:414–5. https://doi.org/10.1136/pgmj.54.632.414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabitha C. Viner D.V.M., D.A.C.V.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viner, T.C. (2018). Thermal/Electrical Injuries. In: Brooks, J. (eds) Veterinary Forensic Pathology, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-67175-8_2

Download citation

Publish with us

Policies and ethics