Skip to main content

Flame Retardant Biobased Polymers

  • Chapter
  • First Online:
Towards Bio-based Flame Retardant Polymers

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

Environmental concerns arising from the limits to the waste management of plastics have entailed a strong development of biobased and biodegradable polymers for a wide range of applications. Tailoring new plastics and composites within a perspective of sustainable development aims to create an environmentally safe alternative to oil based polymer materials. Different categories of these polymers can be distinguished according to their complete or only partial renewable character as well as their ability to biodegrade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. Utrecht University, www.epnoe.eu

  2. http://www.succinity.com/images/succinity_broschure.pdf (2016) Final report FP 7 European project, grant agreement No. 289196

  3. Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73

    Article  Google Scholar 

  4. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635

    Article  Google Scholar 

  5. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H (2011) Flame retardancy and thermal degradation of intumescent flame retardant poly(lactic acid)/starch, biocomposites. Ind Eng Chem Res 50:713–720

    Article  Google Scholar 

  6. Wu K, Hu Y, Song L, Lu HD, Wang ZZ (2009) Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res 48:3150–3157

    Article  Google Scholar 

  7. Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol 71:27–46

    Article  Google Scholar 

  8. Cayla A, Rault F, Giraud S, Salaün F, Fierro V, Celzard A (2016) PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8:331–346

    Article  Google Scholar 

  9. Zhang R, Xiao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform Polym 24:738–746

    Article  Google Scholar 

  10. Zhang X, Xiao Q, Tai H, Huang J, Yang YHu (2013) The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/lignin systems. J Appl Polym Sci 127:4967–4973

    Article  Google Scholar 

  11. Morgan A, Wilkie CA (eds) (2010) Multicomponents FR systems: polymer nanocomposites combined with additional materials. In: Fire retardancy of polymeric materials. CRC Press (Chap. 12)

    Google Scholar 

  12. Fontaine G, Bourbigot S (2009) Intumescent polylactide: a nonflammable material. J Appl Polym Sci 113:3860–3865

    Article  Google Scholar 

  13. Matusinovic Z, Wilkie CA (2012) Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J Mater Chem 22:18701–18704

    Article  Google Scholar 

  14. Wang X, Zhou S, Xing WY, Yu B, Feng XM, Song L, Hu Y (2013) Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A 1:4383–4390

    Article  Google Scholar 

  15. Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387

    Article  Google Scholar 

  16. Wang DY, Leuteritz A, Wang Y-Z, Wagenknecht U, Heinrich G (2010) Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym Deg Stab 95:2474–2480

    Article  Google Scholar 

  17. Sue HJ, Gam KT (2004) Epoxy nanocomposites based on the synthetic α-zirconium phosphate layer structure. Chem Mater 16:242–249

    Article  Google Scholar 

  18. Zhang R, Hu Y, Li BG, Chen ZY, Fan WC (2007) Studies on the preparation and structure of polyacrylamide/α-zirconium phosphate nanocomposites. J Mater Sci 42:5641–5646

    Article  Google Scholar 

  19. Liu CH, Yang YJ (2009) Effects of α-zirconium phosphate aspect ratio on the properties of polyvinyl alcohol nanocomposites. Polym Test 28:801–807

    Article  Google Scholar 

  20. Wang DY, Liu XQ, Wang JS, Wang YZ, Stec AA, Hull TR (2009) Preparation and characterization of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polym Degrad Stab 94:544–549

    Article  Google Scholar 

  21. Liu XQ, Wang DY, Wang XL, Chen L, Wang YZ (2011) Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polym Deg Stab 96:771–777

    Article  Google Scholar 

  22. Hu XP, Li WY, Wang YZ (2004) Synthesis and characterization of a novel nitrogen containing flame retardant. J Appl Polym Sci 94:1556–1561

    Article  Google Scholar 

  23. Vahabi H, Ferry L, Longuet C, Otazaghine B, Negrell-Guirao C, David G, Lopez-Cuesta J-M (2012) Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Mater Chem Phys 136:762–770

    Article  Google Scholar 

  24. Didane N, Giraud S, Devaux E, Lemort G (2012) A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy. Polym Degrad Stab 97:383–391

    Article  Google Scholar 

  25. Fox DM, Lee J, Citro CJ, Novy M (2013) Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym Degrad Stab 98:590–596

    Article  Google Scholar 

  26. Fox DM, Novy M, Brown K, Zammarano M, Harris RH, Murariu M, McCarthy ED, Seppala JE, Gilman JW (2014) Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of intumescing flame retardant formulations on polymer degradation and composite physical properties. Polym Degrad Stab 106:54–62

    Article  Google Scholar 

  27. Gao L, Zheng G, Zhou Y, Hu L, Feng G, Zhang M (2014) Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym Degrad Stab 101:92–101

    Article  Google Scholar 

  28. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900

    Article  Google Scholar 

  29. Zhu H, Zhu Q, Li J, Tao K, Xue L, Yan Q (2011) Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stab 96:183–189

    Article  Google Scholar 

  30. Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM (2006) Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym Adv Technol 17:327–334

    Article  Google Scholar 

  31. Feng C, Liang M, Zhang Y, Jiang J, Huang J, Liu H (2016) Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. J Anal Appl Pyrol 122:241–248

    Article  Google Scholar 

  32. Yang HE, Chapin JT, Gandhi P, Lackhouse T (2013) Micro-scale evaluation of flammability for cable materials. In: Proceeding of 62th international wire & cable symposium

    Google Scholar 

  33. Ke CH, Li J, Fang KY, Zhu Q-L, Zhu J, Yan Q, Wang YZ (2010) Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab 95:763–770

    Article  Google Scholar 

  34. Shabanian M, Kang NJ, Wang DY, Wagenknecht U, Heinrich G (2013) Synthesis of aromatic aliphatic polyamide acting as adjuvant in polylactic acid (PLA)/ammonium polyphosphate (APP) system. Polym Degrad Stab 98:1036–1042

    Article  Google Scholar 

  35. Bocz K, Domonkos M, Igricz T, Kmetty Á, Bárány T, Marosi G (2015) Flame retarded self-reinforced poly(lactic acid) composites of outstanding impact resistance. Compos A 70:27–34

    Article  Google Scholar 

  36. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JA (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750

    Article  Google Scholar 

  37. Garlotta DA (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  Google Scholar 

  38. Jing J, Zhang Y, Tang X, Zhou Y, Li X, Kandola BK, Fang Z (2017) Layer by layer deposition of polyethylenimine and bio-based polyphosphate on ammonium polyphosphate: A novel hybrid for simultaneously improving the flame retardancy and toughness of polylactic acid. Polymer 108:361–371

    Article  Google Scholar 

  39. Levchik SV, Costa L, Camino G (1992) Effect of the fire-retardant, ammonium polyphosphate, on the thermal decomposition on of aliphatic polyamides. I. Polyamides 11 and 12. Polym Degrad Stab 36:31–41

    Article  Google Scholar 

  40. Dorez G, Taguet A, Ferry L, Lopez-Cuesta JM (2013) Thermal and fire behavior of natural fibers/PBS biocomposites. Polym Degrad Stab 98:87–95

    Article  Google Scholar 

  41. Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta J-M. Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polym Adv Technol (accepted)

    Google Scholar 

  42. Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6

    Article  Google Scholar 

  43. Song L, Xuan S, Wang X, Hu Y (2012) Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites. Thermochim Acta 527:1–7

    Article  Google Scholar 

  44. Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46

    Article  Google Scholar 

  45. Pack S, Bobo E, Muir N, Yang K, Swaraj S, Ade H, Cao C, Korach CS, Kashiwagi T, Rafailovich MH (2012) Engineering biodegradable polymer blends containing flame retardant-coated starch/nanoparticles. Polymer 53:4787–4799

    Article  Google Scholar 

  46. Ju Y, Liao F, Dai X, Cao Y, Li J, Wang X (2016) Flame-retarded biocomposites of poly(lactic acid), distiller’s dried grains with solubles and resorcinol di(phenyl phosphate). Compos A 81:52–60

    Article  Google Scholar 

  47. Jing J, Zhang Y, Fang Z (2017) Diphenolic acid based biphosphate on the properties of polylactic acid: synthesis, fire behavior and flame retardant mechanism. Polymer 108:29–37

    Article  Google Scholar 

  48. Chen X, Zhuo J, Jiao C (2012) Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab 97:2143–2147

    Article  Google Scholar 

  49. Laachachi A, Cochez M, Leroy E, Ferriol M, Lopez-Cuesta JM (2007) Fire retardant systems in poly(methyl methacrylate): interactions between metal oxide nanoparticles and phosphinates. Polym Degrad Stab 92:61–69

    Article  Google Scholar 

  50. Braun U, Schartel B, Ficher MA, Jäger C (2007) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab 92:1528–1545

    Article  Google Scholar 

  51. Braun U, Schartel B (2008) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng 293:206–217

    Article  Google Scholar 

  52. Bourbigot S, Fontaine G (2010) Flame retardancy of polylactide: an overview. Polym Chem 1:1413–1422

    Article  Google Scholar 

  53. Isitman NA, Dogan M, Bayramli E, Kaynak C (2012) The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym Degrad Stab 97:1285–1296

    Article  Google Scholar 

  54. Lin HJ, Liu SR, Han LJ, Wang XM, Bian YJ, Dong LS (2013) Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polym Degrad Stab 98:1389–1396

    Article  Google Scholar 

  55. Avinc O, Day R, Carr C, Wilding M (2012) Effect of combined flame retardant, liquid repellent and softener finishes on poly(lactic acid) (PLA) fabric performance. Text Res J 82:975–984

    Article  Google Scholar 

  56. Cheng XW, Guan JP, Tang RC, Liu KQ (2016) Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus containing flame retardant. J Ind Text 46:914–928

    Article  Google Scholar 

  57. Wei LL, Wang DY, Chen H-B, Chen L, Wang XL, Wang YZ (2011) Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polym Degrad Stab 96:1557–1561

    Article  Google Scholar 

  58. Wang DY, Song YP, Lin L, Wang XL, Wang YZ (2011) A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer 52:233–238

    Article  Google Scholar 

  59. Yuan XY, Wang DY, Chen L, Wang XL, Wang YZ (2011) Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polym Degrad Stab 96:1669–1675

    Article  Google Scholar 

  60. Zhan J, Song L, Nie S, Hua Y (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94:291–296

    Article  Google Scholar 

  61. Zhao X, Gao S, Liu G (2016) A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J Anal Appl Pyrol 122:24–34

    Article  Google Scholar 

  62. Liao F, Ju Y, Dai X, Cao Y, Li J, Wang X (2015) A novel efficient polymeric flame retardant for poly (lactic acid) (PLA): synthesis and its effects on flame retardancy and crystallization of PLA. Polym Degrad Stab 120:251–261

    Article  Google Scholar 

  63. Li Z, Wei P, Yang Y, Yan Y, Shi D (2014) Synthesis of a hyperbranched poly(phosphamide ester) oligomer and its high-effective flame retardancy and accelerated nucleation effect in polylactide composites. Polym Degrad Stab 110:104–112

    Article  Google Scholar 

  64. Tao K, Li J, Xu L, Zhao X, Xue L, Fan X, Yan Q (2011) A novel phosphazene cyclomatrix network polymer: design, synthesis and application in flame retardant polylactide. Polym Degrad Stab 96:1248–1254

    Article  Google Scholar 

  65. Tang G, Wang X, Xing W, Zhang P, Wang B, Hong N, Yang W, Hu Y, Song L (2012) Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind Eng Chem Res 51:12009–12016

    Article  Google Scholar 

  66. Tang G, Wang X, Zhang R, Wang B, Hong N, Hu Y, Song L, Gong X (2013) Effect of rare earth hypophosphite salts on the fire performance of biobased polylactide composites. Ind Eng Chem Res 52:7362–7372

    Article  Google Scholar 

  67. Gallo E, Schartel B, Acierno D, Russo P (2011) Flame retardant biocomposites: synergism between phosphinate and nanometric metal oxides. Eur Polym J 47:1390–1401

    Article  Google Scholar 

  68. Bocz K, Szolnoki B, Wladyka-Przybylak M, Bujnowicz K, Harakaly G, Bodzay B (2013) Flame retardancy of biocomposites based on thermoplastic starch. Polimery 58:385–394

    Article  Google Scholar 

  69. Negrell C, Frenehard O, Sonnier R, Dumazert L, Briffaud T, Flat JJ (2016) Self-extinguishing bio-based polyamides. Polym Degrad Stab 134:10–18

    Article  Google Scholar 

  70. Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Synthesis and Properties of thermosetting polymers from a phosphorus containing fatty acids derivative. J Polym Sci Part A: Polym Chem 44:5630–5644

    Article  Google Scholar 

  71. Lligadas G, Ronda JC, Galia M, Cadiz V (2006) Synthesis and Properties of thermosetting polymers from a phosphorus containing fatty acids derivative. J Polym Sci Part A: Polym Chem 44:6717–6727

    Article  Google Scholar 

  72. Montero de Espinoza L, Ronda JC, Galia M, Cadiz V (2009) A straightforward strategies for the efficient synthesis of acrylate and phosphine oxide-containing vegetable oils and their crosslinked materials. J Polym Sci Part A Polym Chem 47:4051–4063

    Article  Google Scholar 

  73. Zhang L, Zhang M, Zhou Y, Hu L (2013) The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab 98:2784–2794

    Article  Google Scholar 

  74. Liu XQ, Wang DY, Wang XL, Chen L, Wang YZ (2013) Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid). Polym Degrad Stab 98:1731–1737

    Article  Google Scholar 

  75. Ding P, Kang B, Zhang J, Yang J, Song N, Tang S, Shi L (2015) Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J Coll Interf Sci 440:46–52

    Article  Google Scholar 

  76. Hu Y, Xu P, Gui H, Wang X, Ding Y (2015) Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos A 77:147–153

    Article  Google Scholar 

  77. Costes L, Laoutid F, Aguedo M, Richel A, Brohez S, Delvosalle C, Dubois P (2016) Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA. Eur Polym J 84:652–667

    Article  Google Scholar 

  78. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228

    Article  Google Scholar 

  79. Costes L, Laoutid F, Dumazert L, Lopez-Cuesta JM, Brohez S, Delvosalle C, Dubois P (2015) Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym Degrad Stab 119:217–227

    Article  Google Scholar 

  80. González A, Dasari A, Herrero B, Plancher E, Santarén J, Esteban A, Lim SH (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97:248–256

    Article  Google Scholar 

  81. Dhanushka Hapuarachchi T, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A 41:954–963

    Article  Google Scholar 

  82. Ferry L, Gaudon P, Leroy E, Lopez-Cuesta JM (2005) Fire retardancy of polymers: new applications of mineral fillers. In: Le Bras M, Wilkie C, Bourbigot S, Duquesne S, Jama C (eds) Intumescence in ethylene-vinyl acetate copolymer filled with magnesium hydroxide and organoclays. The Royal Society of Chemistry, Oxford, pp 302–312 (chapter 22)

    Google Scholar 

  83. Cheng KC, Yu C-B, Guo W, Wang SF, Chuang TH, Lin Y-H (2012) Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay. Carbohydr Polym 87:1119–1123

    Article  Google Scholar 

  84. Cheng KC, Chang SC, Lin YH, Wang CC (2015) Mechanical and flame retardant properties of polylactide composites with hyperbranched polymers. Compos Sci Technol 118:186–192

    Article  Google Scholar 

  85. Kiuchi Y, Iji M, Yanagisawa T, Shukichi T (2014) Flame-retarding polylactic-acid composite formed by dual use of aluminum hydroxide and phenol resin. Polym Degrad Stab 109:336–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Sonnier .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Sonnier, R., Taguet, A., Ferry, L., Lopez-Cuesta, JM. (2018). Flame Retardant Biobased Polymers. In: Towards Bio-based Flame Retardant Polymers. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-67083-6_1

Download citation

Publish with us

Policies and ethics