Skip to main content

Multiagent Coalition Structure Optimization by Quantum Annealing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Abstract

Quantum computing is an increasingly significant area of research, given the speed up that quantum computers may provide over classic ones. In this paper, we address the problem of finding the optimal coalition structure in a small multiagent system by expressing it in a proper format that can be solved by an adiabatic quantum computer such as D-Wave by quantum annealing. We also study the parameter values that enforce a correct solution of the optimization problem.

This is a preview of subscription content, log in via an institution.

References

  1. Airiau, S.: Cooperative games: representation and complexity issues (2012). http://www.lamsade.dauphine.fr/~airiau/Teaching/CoopGames/2012/coopgames-9[8up].pdf

  2. Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structures in cooperative graph games. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013, Bellevue, Washington, pp. 81–87 (2013)

    Google Scholar 

  3. Booth, M., Reinhardt, S.P., Roy, A.: Partitioning optimization problems for hybrid classical/quantum execution, Technical report (2017). http://www.dwavesys.com/sites/default/files/partitioning_QUBOs_for_quantum_acceleration-2.pdf

  4. Bunyk, P.I., Hoskinson, E., Johnson, M.W., Tolkacheva, E., Altomare, F., Berkley, A.J., Harris, R., Hilton, J.P., Lanting, T., Whittaker, J.: Architectural considerations in the design of a superconducting quantum annealing processor. arXiv preprint (2017). https://arxiv.org/pdf/1401.5504v1.pdf

  5. Dahl, E.D.: Programming with D-Wave: map coloring problem (2013). http://www.dwavesys.com/sites/default/files/Map%20Coloring%20WP2.pdf

  6. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J., Neven, H.: What is the computational value of finite range tunneling? Phys. Rev. X 6(3), 10–15 (2016). doi:10.1103/PhysRevX.6.031015

    Article  Google Scholar 

  7. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994). doi:10.1287/moor.19.2.257

    Article  MathSciNet  MATH  Google Scholar 

  8. Douglass, A., King, A.D., Raymond, J.: Constructing SAT filters with a quantum annealer. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 104–120. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_9

    Chapter  MATH  Google Scholar 

  9. D-Wave Systems: Introduction to the D-Wave quantum hardware (2017). https://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware

  10. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 53–55 (1998). doi:10.1103/PhysRevE.58.5355

    Article  Google Scholar 

  11. King, A.D., Hoskinson, E., Lanting, T., Andriyash, E., Amin, M.H.: Degeneracy, degree, and heavy tails in quantum annealing. Phys. Rev. A 93(5), 20–23 (2016). doi:10.1103/PhysRevA.93.052320

    Article  Google Scholar 

  12. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths and weaknesses of weak-strong cluster problems: a detailed overview of state-of-the-art classical heuristics vs quantum approaches. Phys. Rev. A 94(2), 23–37 (2016). doi:10.1103/PhysRevA.94.022337

    Article  Google Scholar 

  13. O’Gorman, B., Perdomo-Ortiz, A., Babbush, R., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1), 163–188 (2015). doi:10.1140/epjst/e2015-02349-9

    Article  Google Scholar 

  14. Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, Article no. 3243 (2014). doi:10.1038/ncomms4243

  15. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition structure generation. In: Proceedings of the 7th International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2008, Estoril, Portugal, pp. 1417–1420 (2008)

    Google Scholar 

  16. Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014). doi:10.1126/science.1252319

    Article  Google Scholar 

  17. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1), 165–200 (1998). doi:10.1016/s0004-3702(98)00045-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv preprint (2016). https://arxiv.org/pdf/1506.08479.pdf

  19. Voice, T., Polukarov, M., Jennings, N.R.: Coalition structure generation over graphs. J. Artif. Intell. Res. 45(1), 165–196 (2012). doi:10.1613/jair.3715

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Leon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Leon, F., Lupu, AŞ., Bădică, C. (2017). Multiagent Coalition Structure Optimization by Quantum Annealing. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics