Skip to main content

A Bidirectional-Based Spreading Activation Method for Human Diseases Relatedness Detection Using Disease Ontology

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Included in the following conference series:

Abstract

There is a numerous demand for a standard representation of the ubiquitous available information on the web. Developing an efficient algorithm for traversing large ontologies is a key challenge for many semantic web applications. This paper proposes spreading activation over ontology method based on bidirectional search technique in order to detect the relatedness between two human diseases. The aim of our work is to detect disease relatedness by considering semantic domain knowledge and description logic rules to identify diseases relatedness. The proposed method is divided into two phases: Semantic Matching and Disease Relatedness Detection. In Semantic matching phase, diseases in submitted query are semantically identified in the ontology graph. In Disease relatedness detection phase, disease relatedness is detected by running a bidirectional-based spreading activation algorithm and return the related path (set of diseases) if so. In addition, the classification of these diseases is provided as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Thank you Dr. Diaa Elsayed, Gastroenterology and Hepatology specialist, for the Counseling.

  2. 2.

    http://www.disease-ontology.org.

  3. 3.

    http://www.violinet.org/vaccineontology.

  4. 4.

    http://infectiousdiseaseontology.org/page/Main_Page.

  5. 5.

    http://obi-ontology.org/page/Main_Page.

References

  1. Al Aboud, A., Al Aboud, K.: Similar names and terms in dermatology; an appraisal. Our Dermatol Online 3, 367–368 (2012)

    Article  Google Scholar 

  2. Anderson, J.R.: A spreading activation theory of memory. J. Verbal Learn. Verbal Behav. 22(3), 261–295 (1983)

    Article  Google Scholar 

  3. Bernstein, A., Kaufmann, E., Bürki, C., Klein, M.: How similar is it? towards personalized similarity measures in ontologies. In: Ferstl, O.K., Sinz, E.J., Eckert, S., Isselhorst, T. (eds.) Wirtschaftsinformatik 2005, pp. 1347–1366. Physica-Verlag HD, Heidelberg (2005). doi:10.1007/3-7908-1624-8_71

    Chapter  Google Scholar 

  4. Croft, D., et al.: The Reactome pathway knowledgebase. Nucleic Acids Res. 42(D1), D472–D477 (2014)

    Article  Google Scholar 

  5. De Maio, C., et al.: Fuzzy knowledge approach to automatic disease diagnosis. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 2088–2095. IEEE (2011)

    Google Scholar 

  6. Dhamankar, R., et al.: iMAP: discovering complex semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 383–394. ACM (2004)

    Google Scholar 

  7. Do, H.-H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 610–621. VLDB Endowment (2002)

    Chapter  Google Scholar 

  8. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology alignment evaluation initiative: six years of experience. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics XV. LNCS, vol. 6720, pp. 158–192. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22630-4_6

    Chapter  Google Scholar 

  9. Fan, Y., Huang, X., An, A.: York university at TREC 2006: enterprise email discussion search. In: TREC 2006 (2006)

    Google Scholar 

  10. Fathalla, S.M., Hassan, Y.F., El-Sayed, M.: A hybrid method for user query reformation and classification. In: 2012 22nd International Conference on Computer Theory and Applications (ICCTA), pp. 132–138. IEEE (2012)

    Google Scholar 

  11. Fellbaum, C.: WordNet. Wiley Online Library, New York (1998)

    MATH  Google Scholar 

  12. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: algorithms and implementation. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics IX. LNCS, vol. 4601, pp. 1–38. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74987-5_1

    Chapter  Google Scholar 

  13. Guo, J., et al.: Semantic matching by non-linear word transportation for information retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 701–710. ACM (2016)

    Google Scholar 

  14. Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Evaluation of research in biomedical ontologies. Brief. Bioinform. 14(6), 696–712 (2013)

    Article  Google Scholar 

  15. Jena, A.: Reasoners and rule engines: jena inference support. The Apache Software Foundation (2013)

    Google Scholar 

  16. Kibbe, W.A., et al.: Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 43(D1), D1071–D1078 (2015)

    Article  Google Scholar 

  17. Köhler, S., et al.: The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42(D1), D966–D974 (2014)

    Article  Google Scholar 

  18. LePendu, P., Musen, M.A., Shah, N.H.: Enabling enrichment analysis with the human disease ontology. J. Biomed. Inform. 44, S31–S38 (2011)

    Article  Google Scholar 

  19. Li, H., Xu, J., et al.: Semantic matching in search. Found. Trends R Inf. Retriev. 7(5), 343–469 (2014)

    Article  Google Scholar 

  20. Ngo, V.M., Cao, T.H., Le, T.M.: Combining named entities with wordnet and using query-oriented spreading activation for semantic text search. In: 2010 IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (RIVF), pp. 1–6. IEEE (2010)

    Google Scholar 

  21. Qin, Y., Yao, L., Sheng, Q.Z.: Approximate semantic matching over linked data streams. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 37–51. Springer, Cham (2016). doi:10.1007/978-3-319-44406-2_5

    Chapter  Google Scholar 

  22. Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012)

    Article  Google Scholar 

  23. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  24. Trotman, B.W., et al.: Studies on the pathogenesis of pigment gallstones in hemolytic anemia: description and characteristics of a mouse model. J. Clin. Invest. 65(6), 1301 (1980)

    Article  Google Scholar 

  25. Wu, Z., et al.: An efficient Wikipedia semantic matching approach to text document classification. Inf. Sci. 393, 15–28 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Fathalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fathalla, S., Kannot, Y. (2017). A Bidirectional-Based Spreading Activation Method for Human Diseases Relatedness Detection Using Disease Ontology. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics