Skip to main content

Emotion Detection in E-learning Using Expectation-Maximization Deep Spatial-Temporal Inference Network

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence Systems (UKCI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 650))

Included in the following conference series:

Abstract

It is very useful for the E-learning systems to detect the students emotional state accurately, and this can remind the teacher in time to change the teaching rhythm or content to meet the student’s emotional changes for making the teaching effect optimization. In this paper, we propose an emotion detection method based on a deep learning approach, Expectation-maximization Deep Spatial-Temporal Inference Network (EM-DeSTIN). This method takes the student’s facial expression as input and combine with Support Vector Machine (SVM) to implement emotion classification and identification. Experimental results show that the proposed method improves the performance of detecting emotion in a noisy environment compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    How many centroids in a node depends on a balance between resource limitation and representational capacity.

  2. 2.

    In DeSTIN, the belief state of a higher level node is called advice, which is the index of the winning centroid in the higher level node.

  3. 3.

    Depending on various applications, we can take the belief values that come from different numbers of levels as a “feature”.

  4. 4.

    http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html.

  5. 5.

    https://github.com/rasmusbergpalm/DeepLearnToolbox/.

References

  1. Daradoumis, T., Bassi, R., Xhafa, F., Caballé, S.: A review on massive e-learning (MOOC) design, delivery and assessment. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 208–213. IEEE (2013)

    Google Scholar 

  2. Zaíane, O.R.: Building a recommender agent for e-learning systems. In: Proceedings of the International Conference on Computers in Education, pp. 55–59. IEEE (2002)

    Google Scholar 

  3. Binali, H.H., Wu, C., Potdar, V.: A new significant area: emotion detection in e-learning using opinion mining techniques. In: 3rd IEEE International Conference on Digital Ecosystems and Technologies, DEST 2009, pp. 259–264. IEEE (2009)

    Google Scholar 

  4. Sylwester, R.: How emotions affect learning. Educ. Leadersh. 52(2), 60–65 (1994)

    Google Scholar 

  5. Oregan, K.: Emotion and e-learning. J. Asynchronous Learn. Netw. 7(3), 78–92 (2003)

    Google Scholar 

  6. Russell, J.A.: Core affect and the psychological construction of emotion. Psychol. Rev. 110(1), 145 (2003)

    Article  Google Scholar 

  7. De Vicente, A., Pain, H.: Informing the detection of the students motivational state: an empirical study. In: International Conference on Intelligent Tutoring Systems, pp. 933–943. Springer (2002)

    Google Scholar 

  8. Torricelli, D., Goffredo, M., Conforto, S., Schmid, M.: An adaptive blink detector to initialize and update a view-basedremote eye gaze tracking system in a natural scenario. Pattern Recogn. Lett. 30(12), 1144–1150 (2009)

    Article  Google Scholar 

  9. Graesser, A.C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., Tutoring Research Group, et al.: Autotutor: a simulation of a human tutor. Cogn. Syst. Res. 1(1), 35–51 (1999)

    Google Scholar 

  10. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18(1), 32–80 (2001)

    Article  Google Scholar 

  11. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16(5), 555–559 (2003)

    Article  Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Jiang, M., Ding, Y., Goertzel, B., Huang, Z., Zhou, C., Chao, F.: Improving machine vision via incorporating expectation-maximization into deep spatio-temporal learning. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1804–1811. IEEE (2014)

    Google Scholar 

  14. Arel, I., Rose, D.C., Coop, R.: Destin: a scalable deep learning architecture with application to high-dimensional robust pattern recognition. In: AAAI Fall Symposium: Biologically Inspired Cognitive Architectures (2009)

    Google Scholar 

  15. Cappé, O., Moulines, E.: On-line expectation-maximization algorithm for latent data models. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 71(3), 593–613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. LeCun, Y., et al.: Lenet-5, convolutional neural networks (2015). http://yann.lecun.com/exdb/lenet

  18. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN (2011)

    Google Scholar 

  19. Jiang, M., Huang, W., Huang, Z., Yen, G.G.: Integration of global and local metrics for domain adaptation learning via dimensionality reduction. IEEE Trans. Cybern. 47(1), 38–51 (2017)

    Article  Google Scholar 

  20. Jiang, M., Zhou, C., Chen, S.: Embodied concept formation and reasoning via neural-symbolic integration. Neurocomputing 74(1), 113–120 (2010)

    Article  Google Scholar 

  21. Chao, F., Wang, Z., Shang, C., Meng, Q., Jiang, M., Zhou, C., Shen, Q.: A developmental approach to robotic pointing via human-robot interaction. Inf. Sci. 283, 288–303 (2014)

    Article  Google Scholar 

  22. Jiang, M., Yu, Y., Liu, X., Zhang, F., Hong, Q.: Fuzzy neural network based dynamic path planning. In: 2012 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 326–330. IEEE (2012)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 61003014 and No. 61673328), the National Social Science Foundation (15BYY082) and the Natural Science Foundation of Fujian Province of China (No. 2017J01128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Xu, J., Huang, Z., Shi, M., Jiang, M. (2018). Emotion Detection in E-learning Using Expectation-Maximization Deep Spatial-Temporal Inference Network. In: Chao, F., Schockaert, S., Zhang, Q. (eds) Advances in Computational Intelligence Systems. UKCI 2017. Advances in Intelligent Systems and Computing, vol 650. Springer, Cham. https://doi.org/10.1007/978-3-319-66939-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66939-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66938-0

  • Online ISBN: 978-3-319-66939-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics