Skip to main content

Gravity and Turbidity Currents: Numerical Simulations and Theoretical Models

  • Chapter
  • First Online:
Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 580))

  • 913 Accesses

Abstract

Part 1 of this article describes high-resolution Direct Numerical Simulations (DNS) of gravity and turbidity currents, with an emphasis on the structure, Lagrangian dynamics and energy budget of the flow. In part 2, we review a novel approach for modeling stratified flows based on vorticity, which avoids many of the empirical assumptions required by earlier modeling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • O.S. Al Ja Aidi, The influence of topography and flow efficiency on the deposition of turbidites. Ph.D. thesis, University of Leeds, 2000

    Google Scholar 

  • C.J. Baker, Vortex flow around the bases of obstacles. Ph.D. thesis, University of Cambridge, 1978

    Google Scholar 

  • C.J. Baker, The turbulent horseshoe vortex. J. Wind Eng. Ind. Aerodyn. 6(1), 9–23 (1980)

    Article  MathSciNet  Google Scholar 

  • T.B. Benjamin, Gravity currents and related phenomena. J. Fluid Mech. 31(2), 209–248 (1968)

    Article  MATH  Google Scholar 

  • V.K. Birman, J.E. Martin, E. Meiburg, The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations. J. Fluid Mech. 537, 125–144 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • F. Blanchette, M. Strauss, E. Meiburg, B. Kneller, M.E. Glinsky, High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment. J. Geophys. Res. 110(C12), C120–C122 (2005)

    Article  Google Scholar 

  • R.T. Bonnecaze, H.E. Huppert, J.R. Lister, Particle-driven gravity currents. J. Fluid Mech. 250, 339–369 (1993)

    Article  Google Scholar 

  • Z. Borden, E. Meiburg, Circulation based models for Boussinesq gravity currents. Phys. Fluids 25(10), 101301 (2013a)

    Article  MATH  Google Scholar 

  • Z. Borden, E. Meiburg, Circulation-based models for Boussinesq internal bores. J. Fluid Mech. 726, R1 (2013b)

    Article  MATH  MathSciNet  Google Scholar 

  • Z. Borden, E. Meiburg, G. Constantinescu, Internal bores: an improved model via a detailed analysis of the energy budget. J. Fluid Mech. 703, 279–314 (2012)

    Article  MATH  Google Scholar 

  • M.I. Cantero, S. Balachandar, A. Cantelli, C. Pirmez, G. Parker, Turbidity current with a roof: direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment. J. Geophys. Res. 114(C3), C03008 (2009)

    Article  Google Scholar 

  • A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • W. Dade, H.E. Huppert, A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42(3), 453–470 (1995)

    Article  Google Scholar 

  • F. de Rooij, S.B. Dalziel, Time- and space-resolved measurements of the deposition under turbidity currents. Spec. Publ. Int. Assoc. Sedimentol. 31, 207–215 (2001)

    Google Scholar 

  • W.E. Dietrich, Settling velocity of natural particles. Water Resour. Res. 18(6), 1615–1626 (1982)

    Article  Google Scholar 

  • T.L. Doligalski, C.R. Smith, J.D.A. Walker, Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573–616 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • S. Elghobashi, G.C. Truesdell, On the two-way interaction between homogeneous turbulence and dispersed solid particles. 1. Turbulence modification. Phys. Fluids A 5, 1790–1801 (1993)

    Article  MATH  Google Scholar 

  • T.H. Ellison, J.S. Turner, Turbulent entrainment in stratified flows. J. Fluid Mech. 6(3), 423–448 (1959)

    Article  MATH  Google Scholar 

  • M. Garcia, G. Parker, Experiments on the entrainment of sediment into suspension by a dense bottom current. J. Geophys. Res. 98(3), 4793–4807 (1993)

    Article  Google Scholar 

  • C. Gladstone, J.C. Phillips, R.S.J. Sparks, Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45(5), 833–843 (1998)

    Article  Google Scholar 

  • B. Hall, E. Meiburg, B. Kneller, Channel formation by turbidity currents: Navier-Stokes-based linear stability analysis. J. Fluid Mech. 615, 185–210 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Hallworth, A. Hogg, H.E. Huppert, Effects of external flow on compositional and particle gravity currents. J. Fluid Mech. 359, 109–142 (1998)

    Article  MATH  Google Scholar 

  • T.C. Harris, A.J. Hogg, H.E. Huppert, Polydisperse particle-driven gravity currents. J. Fluid Mech. 472, 333–371 (2002)

    Article  MATH  Google Scholar 

  • C. Härtel, E. Meiburg, F. Necker, Vorticity dynamics during the start-up phase of gravity currents. Nuovo Cimento-societa Italiana di Fisica-C 22(6), 823–834 (1999)

    Google Scholar 

  • C. Härtel, F. Carlsson, M. Thunblom, Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech. 418, 213–229 (2000a)

    Article  MATH  MathSciNet  Google Scholar 

  • C. Härtel, E. Meiburg, F. Necker, Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J. Fluid Mech. 418, 189–212 (2000b)

    Article  MATH  MathSciNet  Google Scholar 

  • A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 135(2), 260–278 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MATH  Google Scholar 

  • H. Huang, J. Imran, C. Pirmez, Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms. J. Hydraul. Eng. 134(9), 1199–1209 (2008)

    Article  Google Scholar 

  • H.E. Huppert, The intrusion of fluid mechanics into geology. J. Fluid Mech. 173, 557–594 (1986)

    Article  Google Scholar 

  • H.E. Huppert, J.E. Simpson, The slumping of gravity currents. J. Fluid Mech. 99(4), 785–799 (1980)

    Article  Google Scholar 

  • M. Janocko, M.B.J. Cartigny, W. Nemec, E.W.M. Hansen, Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations. Mar. Pet. Geol. 41, 222–249 (2013)

    Google Scholar 

  • I.A. Kane, W.D. McCaffrey, J. Peakall, B.C. Kneller, Submarine channel levee shape and sediment waves from physical experiments. Sediment. Geol. 223(1), 75–85 (2010)

    Article  Google Scholar 

  • A. Kassem, J. Imran, Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels. J. Hydraul. Res. 42(6), 591–602 (2004)

    Article  Google Scholar 

  • J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  • J.B. Klemp, R. Rotunno, W.C. Skamarock, On the propagation of internal bores. J. Fluid Mech. 331, 81–106 (1997)

    Article  MATH  Google Scholar 

  • B. Kneller, W.D. McCaffrey, Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope; deflection, reflection, and facies variation. J. Sediment. Res. 69(5), 980–991 (1999)

    Article  Google Scholar 

  • Y. Kubo, Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sediment. Geol. 164(3–4), 311–326 (2004)

    Article  Google Scholar 

  • Y. Kubo, T. Nakajima, Laboratory experiments and numerical simulation of sediment-wave formation by turbidity currents. Mar. Geol. 192(1), 105–121 (2002)

    Article  Google Scholar 

  • P.H. Kuenen, C.I. Migliorini, Turbidity currents as a cause of graded bedding. J. Geol. 58(2), 91–127 (1950)

    Article  Google Scholar 

  • L. Lesshafft, B. Hall, E. Meiburg, B. Kneller, Deep-water sediment wave formation: linear stability analysis of coupled flow/bed interaction. J. Fluid Mech. 680, 435–458 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • P. Linden, Gravity Current-Theory and laboratory Experiments (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  • S. Lüthi, Experiments on non-channelized turbidity currents and their deposits. Mar. Geol. 40(3–4), M59–M68 (1981)

    Article  Google Scholar 

  • M.R. Maxey, B.K. Patel, E.J. Chang, L.P. Wang, Simulations of dispersed turbulent multiphase flow. Fluid Dyn. Res. 20(1), 143–156 (1997)

    Article  Google Scholar 

  • E. Meiburg, B. Kneller, Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135–156 (2010)

    Article  MATH  Google Scholar 

  • E. Meiburg, E. Wallner, A. Pagella, A. Riaz, C. Hartel, F. Necker, Vorticity dynamics of dilute two-way-coupled particle-laden mixing layers. J. Fluid Mech. 421, 185–227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • G.V. Middleton, Sediment deposition from turbidity currents. Annu. Rev. Earth Planet. Sci. 21, 89–114 (1993)

    Article  Google Scholar 

  • S. Migeon, B. Savoye, E. Zanella, T. Mulder, J.C. Faugères, O. Weber, Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Mar. Pet. Geol. 18(2), 179–208 (2001)

    Article  Google Scholar 

  • R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, A. von Loebbecke, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. CTR Annu. Res. Briefs, 317–327 (1997). NASA Ames/Stanford University

    Google Scholar 

  • T. Nakajima, M. Satoh, The formation of large mudwaves by turbidity currents on the levees of the Toyama deep-sea channel. Japan Sea. Sedimentology 48(2), 435–463 (2001)

    Article  Google Scholar 

  • M.M. Nasr-Azadani, Understanding Turbidity Currents Interacting With Complex Seafloor Topographies: A Depth-Resolved Numerical Investigation. Ph.D. thesis, University of California at Santa Barbara, 2013

    Google Scholar 

  • M.M. Nasr-Azadani, E. Meiburg, TURBINS: An immersed boundary, Navier-Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies. Comput. Fluids 45(1), 14–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • M.M. Nasr-Azadani, E. Meiburg, Influence of seafloor topography on the depositional behavior of bi-disperse turbidity currents: a three-dimensional, depth-resolved numerical investigation. Environ. Fluid Mech. 14(2), 319–342 (2014)

    Article  Google Scholar 

  • M.M. Nasr-Azadani, E. Meiburg, Gravity currents propagating into shear. J. Fluid Mech. 778, 552–585 (2015)

    Article  MathSciNet  Google Scholar 

  • M.M. Nasr-Azadani, B. Hall, E. Meiburg, Polydisperse turbidity currents propagating over complex topography: comparison of experimental and depth-resolved simulation results. Comput. Geosci. 53, 141–153 (2013)

    Article  Google Scholar 

  • F. Necker, C. Härtel, L. Kleiser, E. Meiburg, High-resolution simulations of particle-driven gravity currents. Int. J. Multiph. Flow 28(2), 279–300 (2002)

    Article  MATH  Google Scholar 

  • F. Necker, C. Härtel, L. Kleiser, E. Meiburg, Mixing and dissipation in particle-driven gravity currents. J. Fluid Mech. 545, 339–372 (2005)

    Article  MATH  Google Scholar 

  • R.I. Nokes, M.J. Davidson, C.A. Stepien, W.B. Veale, R.L. Oliver, The front condition for intrusive gravity currents. J. Hydraul. Res. 46(6), 788–801 (2008)

    Article  Google Scholar 

  • W.R. Normark, D.J.W. Piper, H. Posamentier, C. Pirmez, S. Migeon, Variability in form and growth of sediment waves on turbidite channel levees. Mar. Geol. 192(1), 23–58 (2002)

    Article  Google Scholar 

  • C.D. Oehy, A.J. Schleiss, Control of turbidity currents in reservoirs by solid and permeable obstacles. J. Hydraul. Eng. 133(6), 637–648 (2007)

    Article  Google Scholar 

  • J. Peakall, K.J. Amos, G.M. Keevil, P.W. Bradbury, S. Gupta, Flow processes and sedimentation in submarine channel bends. Mar. Pet. Geol. 24(6), 470–486 (2007)

    Article  Google Scholar 

  • C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

  • L. Rayleigh, On the theory of long waves and bores. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 90(619), 324–328 (1914)

    Google Scholar 

  • J.W. Rottman, J.E. Simpson, Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95–110 (1983)

    Article  Google Scholar 

  • P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  • J.O. Shin, S.B. Dalziel, P.F. Linden, Gravity currents produced by lock exchange. J. Fluid Mech. 521, 1–34 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • J.E. Simpson, Effects of the lower boundary on the head of a gravity current. J. Fluid Mech. 53(4), 759–768 (1972)

    Article  Google Scholar 

  • J.E. Simpson, Gravity Currents: In the Environment and the Laboratory (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • P.K. Smolarkiewicz, R. Rotunno, Low Froude number flow past three-dimensional obstacles. Part II: upwind flow reversal zone. J. Atmos. Sci. 47(12), 1498–1511 (1990)

    Article  Google Scholar 

  • W. H. Snyder, R. E. Britter, and J. C. R. Hunt, A fluid modeling study of the flow structure and plume impingement on a three dimensional hill in stably stratified flow, in Wind Engineering-Proceedings of the Fifth International Conference, vol. 1 (Pergamon Press, 1979), pp. 319–329

    Google Scholar 

  • W.H. Snyder, J.C.R. Hunt, J.T. Lee, I.P. Castro, R.E. Lawson, R.E. Eskridge, R.S. Thompson, Y. Ogawa, Structure of strongly stratified flow over hills: dividing-streamline concept. J. Fluid Mech. 152, 249–288 (1985)

    Article  Google Scholar 

  • M. Strauss, M.E. Glinsky, Turbidity current flow over an erodible obstacle and phases of sediment wave generation. J. Geophys. Res. 117(C6), C06007 (2012)

    Article  Google Scholar 

  • M. Vinokur, On one-dimensional stretching functions for finite-difference calculations. J. Comput. Phys. 50(2), 215–234 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • T. von Kármán, The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46(8), 615–683 (1940)

    Article  MATH  Google Scholar 

  • K.B. Winters, L. Armi, Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech. 700, 502–513 (2012)

    Article  MATH  Google Scholar 

  • I.R.F. Wood, J.E. Simpson, Jumps in layered miscible fluids. J. Fluid Mech. 140, 329–342 (1984)

    Article  Google Scholar 

  • A.W. Woods, M.I. Bursik, A.V. Kurbatov, The interaction of ash flows with ridges. Bull. Volcanol. 60(1), 38–51 (1998)

    Article  Google Scholar 

  • R.B. Wynn, D.A.V. Stow, Classification and characterisation of deep-water sediment waves. Mar. Geol. 192(1–3), 7–22 (2002)

    Article  Google Scholar 

  • R.B. Wynn, G. Weaver, P.P.E. Ercilla, D.A.V. Stow, D.G. Masson, Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology 47(6), 1181–1197 (2000)

    Article  Google Scholar 

  • C.-S. Yih, Dynamics of Nonhomogeneous Fluids, vol. 306 (Macmillan, New York, 1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Meiburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Meiburg, E., Nasr-Azadani, M.M. (2018). Gravity and Turbidity Currents: Numerical Simulations and Theoretical Models. In: Clercx, H., Van Heijst, G. (eds) Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy. CISM International Centre for Mechanical Sciences, vol 580. Springer, Cham. https://doi.org/10.1007/978-3-319-66887-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66887-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66886-4

  • Online ISBN: 978-3-319-66887-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics