Skip to main content

The Anaerobic Process in Used Water Purification and Sludge Treatment, Basics

  • Living reference work entry
  • First Online:

Abstract

The anaerobic process is a treatment step in which organic matter is broken down into simpler components under anaerobic conditions. The process begins with hydrolysis, followed by acidogenesis and acetogenesis. Methanogenesis is the final step in anaerobic degradation and marks the point at which the final products, CH4 and CO2, leave the process in gaseous form. Each of these steps is carried out by different groups of bacteria. Moreover, there is a symbiotic relationship between methanogenic and acetogenic bacteria, which means that both bacteria types only survive in teamwork. The whole process is an effective method of converting unstable organic matter into a more stabilized form and also results in a considerable reduction of solid matter. The nature of organic matter, pH, temperature, nutrients, and the presence of toxic compounds constitute environmental factors that influence the biological reactions. Anaerobic processes can not only be employed to treat highly loaded used water, but also solid materials such are sewage sludge, organic farm waste, municipal solid waste, green/botanical waste, organic industrial and commercial waste, etc. Anaerobic digesters are usually used to treat solid materials, whereas UASB reactors are utilized for treating used water.

This is a preview of subscription content, log in via an institution.

Abbreviations

AD:

Anaerobic digestion

ADBA:

Anaerobic Digestion and Bioresources Association

CaCO3:

Calcium carbonate

CH4:

Methane

CO2:

Carbon dioxide

COD:

Chemical oxygen demand

DS:

Dry solids

EBA:

European Biogas Association

H2:

Hydrogen

HRT:

Hydraulic retention time

NH3:

Ammonia

NH4-N:

Ammonium nitrogen

ORP:

Oxidation-reduction potential

PE:

Population equivalent

SRT:

Solid retention time

UASB:

Upflow anaerobic sludge blanket

VFA:

Volatile fatty acids

VS:

Volatile solids

References

  • ADBA (Anaerobic Digestion and Bioresources Association). http://adbioresources.org/about-ad/history-of-ad/. Accessed 15 May 2019

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations: a review. Water Air Soil Pollut 47:335–379

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chernicharo CA (2007) Anaerobic reactors. Biological wastewater treatment, vol 4. IWA Publishing, London

    Google Scholar 

  • Davis ML (2010) Water and wastewater engineering, design principles and practice. Copyright © 2010 by The McGraw-Hill Companies

    Google Scholar 

  • DWA-M 368 (2014) Biologische Stabilisierung von Klärschlamm. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef

    Google Scholar 

  • DWA-M 380 (2009) Co-Vergärung in kommunalen Klärschlammfaulbehältern, Abfallvergärungsanlagen und landwirtschaftlichen Biogasanlagen. d eutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.

    Google Scholar 

  • EBA (European Biogas Association). http://european-biogas.eu/. Accessed 15 May 2019

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken. Published simultaneously in Canada. Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved

    Book  Google Scholar 

  • Gustavsson J (2012) Cobalt and nickel bioavailability for biogas formation. PhD thesis, Department of Thematic Studies, University of Linköping, Linköping, Water and environmental studies, 19 January 2012, pp 1–64

    Google Scholar 

  • Hartmann H, Ahring BK (2006) Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Sci Technol 53(8):7–22

    Article  CAS  Google Scholar 

  • Hobiger G (1996) Ammoniak im Wasser – Ableitung einer Formel zur Berechnung von Ammoniak in wässrigen Lösungen (No. UBA-BE-076). Umweltbundesamt, Wien

    Google Scholar 

  • Hütter LA (1992) Wasser und Wasseruntersuchung: Methodik, Theorie und Praxis chemischer, chemisch-physikalischer, biologischer und bakteriologischer Untersuchungsverfahren, 5th edn. Salle, Frankfurt am Main

    Google Scholar 

  • Jahn L, Baumgartner T, Svardal K, Krampe J (2016) The influence of temperature and SRT on high-solid digestion of municipal sewage sludge. Water Sci Technol 74(4):836. IWA Publishing

    Article  CAS  Google Scholar 

  • Kim IS, Kim DH, Hyun SH (2000) Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Sci Technol 41:67–73

    Article  CAS  Google Scholar 

  • Kroiss H (1985) Anaerobe Abwasserreinigung. Wiener Mitteilungen. Institut für Wassergüte und Landschaftswasserbau, Wien

    Google Scholar 

  • Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734

    Article  CAS  Google Scholar 

  • Lettinga G, Hulshoff Pol LW, Zeeman G (1996) Biological wastewater treatment, Part I: anaerobic wastewater treatment. Lecture notes. Wageningen Agricurtural University, edn January, 1996

    Google Scholar 

  • Li W, Yu H (2016) Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment. Engineering 2(4):438–446

    Article  CAS  Google Scholar 

  • Lin CY (1992) Effect of heavy metals on volatile fatty acid degradation in anaerobic digestion. Water Res 26:177–183

    Article  CAS  Google Scholar 

  • Lin CY, Chen CC (1999) Effect of heavy metals on the methanogenic UASB granule. Water Res 33(2):409–416. ISSN 0043-1354. https://doi.org/10.1016/S0043-1354(98)00211-5

    Article  CAS  Google Scholar 

  • Mata-Alvarez J (2002) Fundamentals of the anaerobic digestion process. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid waste. IWA Publishing, Amsterdam

    Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals – Part one: chemistry and microbiology. Public Works 95(9):107–112

    CAS  Google Scholar 

  • Metcalf and Eddy, Inc. (2003) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Mizuno O, Li YY, Noike T (1994) Effects of sulfate concentration and sludge retention time on the interaction between methane production and sulfate reduction for butyrate. Water Sci Technol 30(8):45–54

    Article  CAS  Google Scholar 

  • Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31:2385–2392

    Article  CAS  Google Scholar 

  • Nayono SE (2009) Anaerobic digestion of organic solid waste for energy production. Karlsruher Berichte zur Ingenieurbiologie, vol 46. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  • Neves L, Oliveira R, Alves MM (2009) Co-digestion of cow manure, food waste and intermittent input of fat. Bioresour Technol 100:1957–1962

    Article  CAS  Google Scholar 

  • Palmowski LM, Müller JA (2000) Influence of the size reduction of organic waste on its anaerobic digestion. Water Sci Technol 41(3):155–162

    Article  CAS  Google Scholar 

  • Reichl M (2015) Schlammfaulung mit erhöhtem Trockensubstanzgehalt – Chancen, Grenzen, Herausforderungen. Doctoral thesis on Vienna University of Technology, Faculty of Civil Engineering, Vienna

    Google Scholar 

  • Riffat R (2013) Fundamentals of wastewater treatment and engineering. IWA Publishing, CRC Press Taylor & Francis Group/IWA Publishing Alliance House, Boca Raton/London

    Google Scholar 

  • Rudolfs W (1927) Effect of temperature on sewage sludge digestion. Ind Eng Chem 19(1):241–243

    Article  CAS  Google Scholar 

  • Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 1–21, 2017(3852369):1. https://doi.org/10.1155/2017/3852369

  • Van Haandel A, van der Lubbe J (2007) Handbook of biological waste water treatment: design and optimisation of activated sludge systems. Quist Publishing, Leidschendam

    Google Scholar 

  • van Lier JB, Nidal M, Zeeman G (2008) Chapter 16, Anaerobic wastewater treatment. In: Henze M, Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London. https://ocw.tudelft.nl/wp-content/uploads/Chapter_16_-_Anaerobic_Wastewater_Treatment.pdf

  • van Lier J, Vash A, Lubbe J, Barry H (2010) Anaerobic sewage treatment using UASB reactors: engineering and operational aspects. Environmental Anaerobic Technology, pp 59–89. https://doi.org/10.1142/9781848165434_0004

    Chapter  Google Scholar 

  • van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14: 681–702

    Article  CAS  Google Scholar 

  • Vavilin VA, Vasiliev VB, Rytov SV, Ponomarev AV (1994) Self-oscillating coexistence of methanogens and sulfate-reducers under hydrogen sulfide inhibition and the pH regulating effect. Bioresour Technol 49:105–119

    Article  CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28(6):939–951

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33(5):848–853. https://doi.org/10.1016/j.biombioe.2009.01.007

    Article  CAS  Google Scholar 

  • Zeeman G, Sanders WTM, Wang KY, Lettinga G (1996) Anaerobic treatment of complex wastewater and waste-activated sludge application of an upflow anaerobic removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD. In: IAWQ-NVA conference for advanced wastewater treatment, Amsterdam, pp 23–25

    Google Scholar 

  • Zeeman G, Kujawa-Roeleveld K, Lettinga G (2001) Chapter 12, Anaerobic treatment systems for high-strength domestic waste (water) streams. In: Lens PNL, Zeeman G, Lettinga G (eds) Decentralised sanitation and reuse. IWA Publishing, London

    Google Scholar 

  • Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11(18):4127–4139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdanka Radetic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Radetic, B. (2020). The Anaerobic Process in Used Water Purification and Sludge Treatment, Basics. In: Lahnsteiner, J. (eds) Handbook of Water and Used Water Purification. Springer, Cham. https://doi.org/10.1007/978-3-319-66382-1_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66382-1_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66382-1

  • Online ISBN: 978-3-319-66382-1

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics