Skip to main content

Very-High-Resolution and Interferometric SAR: Markovian and Patch-Based Non-local Mathematical Models

  • Chapter
  • First Online:
Mathematical Models for Remote Sensing Image Processing

Abstract

This chapter is dedicated to very-high-resolution (VHR) SAR imagery, including interferometric applications. First, the principles of SAR data acquisition are presented as well as the different types of configurations. The widely adopted Gaussian complex model of fully developed speckle is described as well as more advanced statistical models for VHR SAR data that account for textures. The following two parts are devoted to SAR image estimation and to image denoising within two different frameworks. First, Markovian modeling is introduced and the associated optimization approaches are presented, including graph-cut-based optimization. The second framework is the patch-based non-local modeling of SAR complex data. Both frameworks are adapted to SAR images through the use of statistical models specific to SAR imagery. Their applications to amplitude data, interferometry, and fusion with optical data are illustrated. A special focus is given to phase unwrapping applied to single- and multi-channel interferometry, showing the usefulness of local and global contextual models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The polarimetric case is mentioned in this chapter for completeness and to stress the generality of the described methods; it will be discussed more in-depth in the following chapter.

  2. 2.

    Corresponding to the backscattering coefficient \(\gamma (x,r)\) of the previous section but taking into account the amplitude factors.

  3. 3.

    \(\mathbb {E}\) is used here for the expectation operator, differently from the other chapters, for clarity and to avoid ambiguities.

  4. 4.

    In the following, we will denote by \({\mathbf {u}}\) the parameters of interest and \(\mathbf {v}\) the observations provided by the data in a generic way. If useful, these notations will be replaced by the notations introduced in Sect. 4.1.3 for SAR data.

  5. 5.

    Since each element of the random vector can be assigned to a given spatial location, we will refer to this random vector as a random field.

  6. 6.

    The vocabulary in use in Markov random fields theory comes from the field of statistical physics.

  7. 7.

    By global convergence, it is meant that the algorithm converges even if the initial value \({\mathbf {u}}^{(0)}\) is far from the optimum.

  8. 8.

    Also called an s-t-graph.

  9. 9.

    Note that edges connecting a node in \(\mathscr {T}\) to a node in \(\mathscr {S}\) do not enter the sum.

  10. 10.

    The maximum flow and the minimum cut problems can be formulated as two dual linear programs.

  11. 11.

    The class of MRF with cliques involving triplets is also covered in [52].

  12. 12.

    The method described in [57] applies to all convex pairwise terms \(\mathscr {R}\), see also [58, 59].

  13. 13.

    A total-variation regularization was applied on the optical image to remove low-significance textures.

  14. 14.

    In practice, they are empirically estimated using local samples and Eq. (4.35).

References

  1. Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K.P.: A tutorial on synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 1(1), 6–43 (2013)

    Article  Google Scholar 

  2. Fornaro, G., Pascazio, V.: Chapter 20 - SAR interferometry and tomography: theory and applications. In: Academic Press Library in Signal Processing: Communications and Radar Signal Processing. Academic Press Library in Signal Processing, vol. 2, pp. 1043–1117. Elsevier (2014)

    Google Scholar 

  3. Franceschetti, G., Schirinzi, G.: A SAR processor based on two-dimensional FFT codes. IEEE Trans. Aerosp. Electron. Syst. 26(2), 356–366 (1990)

    Article  Google Scholar 

  4. Franceschetti, G., Lanari, R.: Synthetic aperture radar processing (1999)

    Google Scholar 

  5. Franceschetti, G., Lanari, R., Pascazio, V., Schirinzi, G.: WASAR: a wide-angle SAR processor. IEE Proc. Part F: Radar Signal Process. 139(2), 107–114 (1992)

    Google Scholar 

  6. Bamler, R., Hartl, P.: Synthetic Aperture radar interferometry. Inverse Problem 14, R1–R54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, M., Bruning, C., Alpers, W.: Simulation of ocean waves imaging by an along-track interferometric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 35(3), 618–631 (1997)

    Article  Google Scholar 

  8. Budillon, A., Pascazio, V., Schirinzi, G.: Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geosci. Remote Sens. Lett. 5(3), 349–353 (2008)

    Article  Google Scholar 

  9. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 31, 445–464 (1993)

    Google Scholar 

  10. Tupin, F., Inglada, J., Nicolas, J.M.: Remote Sensing Imagery. ISTE - Wiley (2014)

    Google Scholar 

  11. Goodman, J.: Some fundamental properties of speckle. J. Opt. Soc. Am. 66(11), 1145–1150 (1976)

    Article  Google Scholar 

  12. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications (1964)

    Google Scholar 

  13. Lee, J., Hoppel, K., Mango, S., Miller, A.: Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)

    Article  Google Scholar 

  14. Nicolas, J.M.: Introduction aux statistiques de deuxème espèce: applications des log-moments et des log-cumulants à l’ analyse des lois d’image radar. Traitement du signal 19(3), 139–167 (2002)

    MATH  Google Scholar 

  15. Frery, A.C., Muller, H.J., Yanasse, C.C.F., Sant’Anna, S.J.S.: A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997)

    Article  Google Scholar 

  16. Krylov, V., Moser, G., Serpico, S.B., Zerubia, J.: On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process. 22(10), 3791–3806 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tison, C., Nicolas, J.M., Tupin, F., Maître, H.: A new statistical model of urban areas in high resolution SAR images for Markovian segmentation. IEEE Trans. Geosci. Remote Sens. 42, 2046–2057 (2004)

    Article  Google Scholar 

  18. Anfinsen, S.N., Eltoft, T.: Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 49(6), 2281–2295 (2011)

    Article  Google Scholar 

  19. Nicolas, J.M., Tupin, F.: Statistical models for SAR amplitude data: a unified vision through Mellin transform and Meijer functions. In: EUSIPCO. Budapest, Hungary (2016)

    Google Scholar 

  20. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Methodol.), pp. 192–236 (1974)

    Google Scholar 

  21. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  22. Fjorthoft, R., Delignon, Y., Pieczinski, W., Sigelle, M., Tupin, F.: Unsupervised segmentation of radar images using hidden Markov chains and hidden Markov random fields. IEEE Trans. Geosci. Remote Sens. pp. 675–686 (2003)

    Google Scholar 

  23. Benboudjema, D., Tupin, F.: Markovian modeling and Fisher distribution for unsupervised segmentation of radar images. Int. J. Remote Sens. (2013)

    Google Scholar 

  24. Niu, X., Ban, Y.: Unsupervised SAR image segmentation using a hierarchical TMF model. IEEE Geosci. Remote Sens. Lett. 7(1), 210–214 (2010)

    Article  Google Scholar 

  25. Voisin, A., Krylov, V., Moser, G., Serpico, S.B., Zerubia, J.: Classification of very high resolution SAR images of urban areas using copulas and texture in a hierarchical Markov random field model. IEEE Geosci. Remote Sens. Lett. 10(1), 96–100 (2013)

    Article  Google Scholar 

  26. Wang, Y.H., Han, C.Z., Tupin, F.: PolSAR data segmentation by combining tensor space cluster analysis and Markovian framework. IEEE Geosci. Remote Sens. Lett. 10(5) (2013)

    Google Scholar 

  27. Lobry, S., Denis, L., Tupin, F.: Multitemporal SAR image decomposition into strong scatterers, background, and speckle. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2016)

    Google Scholar 

  28. Niu, X., Ban, Y.: An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(4) (2012)

    Google Scholar 

  29. Moser, G., Serpico, S.B.: Unsupervised change detection from multichannel SAR data by Markovian data fusion. IEEE Trans. Geosci. Remote Sens. 47(7), 2114–2128 (2009)

    Article  Google Scholar 

  30. Perciano, T., Tupin, F., Hirata, R., Cesar, R.M.: A two-level Markov random field for road network extraction and its application with optical, SAR and multitemporal data. Int. J. Remote Sens. (2016)

    Google Scholar 

  31. Benedek, C., Descombes, X., Zerubia, J.: Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 33–50 (2012)

    Article  Google Scholar 

  32. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods (1993)

    Google Scholar 

  33. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer Science & Business Media (2009)

    Google Scholar 

  34. Markov Random Field modeling: inference & learning in computer vision & image understanding: a survey. Comput. Vis. Image Underst. 117(11), 1610–1627 (2013)

    Article  Google Scholar 

  35. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM J. Imaging Sci. 3(4), 1122–1145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media (2006)

    Google Scholar 

  37. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer (2011)

    Google Scholar 

  39. Parikh, N., Boyd, S.P.: Proximal algorithms. Found. Trends Opt. 1(3), 127–239 (2014)

    Article  Google Scholar 

  40. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic press (2014)

    Google Scholar 

  41. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends\({\textregistered }\) Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  42. Hestenes, M.R.: Multiplier and gradient methods. J. Opt. Theory Appl. 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference (1988)

    Google Scholar 

  44. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  45. Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Kröger, T., Lellmann, J., et al.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)

    Article  MathSciNet  Google Scholar 

  46. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51(2), 271–279 (1989)

    Google Scholar 

  47. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3), 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, McGraw-Hill Book Co. (2001)

    MATH  Google Scholar 

  49. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  50. Verma, T., Batra, D.: MaxFlow revisited: an empirical comparison of maxflow algorithms for dense vision problems. In: BMVC, pp. 1–12 (2012)

    Google Scholar 

  51. Kolmogorov, V.: maxflow, a C++ library for maxflow/min-cut computation (2010). http://vision.csd.uwo.ca/code/. Accessed June 2016

  52. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph-cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2) (2004)

    Google Scholar 

  53. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts-a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  54. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  55. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for Markov random field optimization. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1392–1405 (2010)

    Article  Google Scholar 

  56. Lempitsky, V., Rother, C., Blake, A.: Logcut-efficient graph cut optimization for Markov random fields. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  57. Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)

    Article  Google Scholar 

  58. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part ii: Levelable functions, convex priors and non-convex cases. J. Math. Imaging Vis. 26(3), 277–291 (2006)

    Article  Google Scholar 

  59. Schlesinger, D., Flach, B.: Transforming an arbitrary minsum problem into a binary one. Fak. Informatik, TU (2006)

    Google Scholar 

  60. Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Denis, L., Tupin, F., Darbon, J., Sigelle, M.: SAR image regularization with fast approximate discrete minimization. IEEE Trans. Image Process. 18(7), 1588–1600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Xie, H., Pierce, L.E., Ulaby, F.T.: Statistical properties of logarithmically transformed speckle. IEEE Trans. Geosci. Remote Sens. 40(3), 721–727 (2002)

    Article  Google Scholar 

  64. Bioucas-Dias, J.M., Figueiredo, M.A.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(7), 1720–1730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3), 201–226 (2010)

    Article  Google Scholar 

  66. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Çetin, M., Karl, W.C.: Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 10(4), 623–631 (2001)

    Article  MATH  Google Scholar 

  68. Potter, L.C., Ertin, E., Parker, J.T., Cetin, M.: Sparsity and compressed sensing in radar imaging. Proc. IEEE 98(6), 1006–1020 (2010)

    Article  Google Scholar 

  69. Denis, L., Tupin, F., Rondeau, X.: Exact discrete minimization for TV + L0 image decomposition models. In: IEEE International Conference on Image Processing, pp. 2525–2528 (2010)

    Google Scholar 

  70. Denis, L., Tupin, F., Darbon, J., Sigelle, M.: Joint regularization of phase and amplitude of InSAR data: Application to 3-D reconstruction. IEEE Trans. Geosci. Remote Sens. 47(11), 3774–3785 (2009)

    Article  Google Scholar 

  71. Itoh, K.: Analysis of the phase unwrapping problem. Appl. Opt. 21(14) (1982)

    Google Scholar 

  72. Eineder, M., Adam, N.: A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model. Appl. Numer. Math. 43(4), 359–373 (2002)

    Article  MathSciNet  Google Scholar 

  73. Ferretti, A., Prati, C., Rocca, F.: Multibaseline InSAR DEM reconstruction: the wavelet approach. Il Nuovo Cimento 24, 159–176 (2001)

    Google Scholar 

  74. Fornaro, G., Pauciullo, A., Sansosti, E.: Phase difference-based multichannel phase unwrapping. IEEE Trans. Image Process. 14(7), 960–972 (2005)

    Article  Google Scholar 

  75. Pascazio, V., Schirinzi, G.: Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters. IEEE Trans. Image Process. 11(12), 1478–1489 (2002)

    Article  Google Scholar 

  76. Ferraiuolo, G., Meglio, F., Pascazio, V., Schirinzi, G.: DEM reconstruction accuracy in multichannel SAR interferometry. IEEE Trans. Geosci. Remote Sens. 47(1), 191–201 (2009)

    Article  Google Scholar 

  77. Baselice, F., Ferraioli, G., Pascazio, V., Schirinzi, G.: Contextual information-based multichannel synthetic aperture radar interferometry: addressing dem reconstruction using contextual information. IEEE Signal Process. Mag. 31(4), 59–68 (2014)

    Article  Google Scholar 

  78. Ferraiuolo, G., Pascazio, V., Schirinzi, G.: Maximum a posteriori estimation of height profiles in InSAR imaging. IEEE Geosci. Remote Sens. Lett. 1, 66–70 (2004)

    Article  Google Scholar 

  79. Ferraioli, G., Shabou, A., Tupin, F., Pascazio, V.: Multichannel phase unwrapping with graph-cuts. IEEE Geosci. Remote Sens. Lett. 6(3), 562–566 (2009)

    Article  Google Scholar 

  80. Ferraioli, G., Ferraiuolo, G., Pascazio, V.: Phase-Offset Estimation in Multichannel SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 5(3), 458–462 (2008)

    Article  Google Scholar 

  81. Gatti, G., Tebaldini, S., Mariotti d’Alessandro, M., Rocca, F.: ALGAE: a fast algebraic estimation of interferogram phase offsets in space-varying geometries. IEEE Trans. Geosci. Remote Sens. 49(6), 2343–2353 (2011)

    Article  Google Scholar 

  82. Shabou, A., Tupin, F.: A Markovian approach for DEM estimation from multiple InSAR data with atmospheric contributions. IEEE Geosci. Remote Sens. Lett. 9(4), 764–768 (2012)

    Article  Google Scholar 

  83. Shabou, A., Baselice, F., Ferraioli, G.: Urban digital elevation model reconstruction using very high resolution multichannel insar data. IEEE Trans. Geosci. Remote Sens. 50(11), 4748–4758 (2012)

    Article  Google Scholar 

  84. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  85. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44. IEEE (1993)

    Google Scholar 

  86. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  87. Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: IEEE Conference on Computer Vision and Pattern Recognition 2, 860–867 (2005)

    Google Scholar 

  88. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)

    Article  Google Scholar 

  89. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse problems 23(3), 947 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  90. Chen, Y., Feng, W., Ranftl, R., Qiao, H., Pock, T.: A higher-order MRF based variational model for multiplicative noise reduction. IEEE Signal Process. Lett. 21(11), 1370–1374 (2014)

    Article  Google Scholar 

  91. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: IEEE International Conference on Computer Vision, pp. 479–486 (2011)

    Google Scholar 

  93. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.), pp. 1–38 (1977)

    Google Scholar 

  94. Tabti, S., Deledalle, C.A., Denis, L., Tupin, F.: Modeling the distribution of patches with shift-invariance: application to SAR image restoration. In: IEEE International Conference on Image Processing, pp. 96–100 (2014)

    Google Scholar 

  95. Xie, H., Pierce, L.E., Ulaby, F.T.: SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40(10), 2196–2212 (2002)

    Article  Google Scholar 

  96. Foucher, S.: SAR image filtering via learned dictionaries and sparse representations. In: IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. I–229 (2008)

    Google Scholar 

  97. Mäkitalo, M., Foi, A., Fevralev, D., Lukin, V.: Denoising of single-look SAR images based on variance stabilization and nonlocal filters. In: IEEE International Conference on Mathematical Methods in Electromagnetic Theory, pp. 1–4 (2010)

    Google Scholar 

  98. Lee, J.S.: Digital image smoothing and the sigma filter. Comput. Vis. Graphics Image Process. 24(2), 255–269 (1983)

    Article  Google Scholar 

  99. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  100. Conradsen, K., Nielsen, A.A., Schou, J., Skriver, H.: A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 41(1), 4–19 (2003)

    Article  Google Scholar 

  101. Deledalle, C.A., Denis, L., Tupin, F.: How to compare noisy patches? Patch similarity beyond Gaussian noise. Int. J. Comput. Vis. 99(1), 86–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  102. Deledalle, C.A., Denis, L., Tupin, F., Reigber, A., Jäger, M.: NL-SAR: a unified nonlocal framework for resolution-preserving (Pol)(In) SAR Denoising. IEEE Trans. Geosci. Remote Sens. 53(4), 2021–2038 (2015)

    Article  Google Scholar 

  103. Polzehl, J., Spokoiny, V.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields 135(3), 335–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  104. Kay, S.M.: Fundamentals of Statistical Signal Processing, vol. I: Estimation Theory (1993)

    Google Scholar 

  105. Lee, J.S., Wen, J.H., Ainsworth, T.L., Chen, K.S., Chen, A.J.: Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote Sens. 47(1), 202–213 (2009)

    Article  Google Scholar 

  106. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  107. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  108. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012)

    Article  Google Scholar 

  109. Deledalle, C.A., Denis, L., Ferraioli, G., Tupin, F.: Combining patch-based estimation and total variation regularization for 3D InSAR reconstruction. In: IEEE International Geoscience and Remote sensing Symposium, Milan, Italy (2015)

    Google Scholar 

  110. Lee, J.S., Pottier, E.: Polarimetric Radar Imaging: Basics and Applications. CRC Press (2009)

    Google Scholar 

  111. Massonnet, D., Souyris, J.C.: Imaging with Synthetic Aperture Radar. EPFL Press (2008)

    Google Scholar 

  112. Argenti, F., Lapini, A., Bianchi, T., Alparone, L.: A tutorial on speckle reduction in synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 1(3), 6–35 (2013)

    Article  Google Scholar 

  113. Deledalle, C.A., Denis, L., Poggi, G., Tupin, F., Verdoliva, L.: Exploiting patch similarity for SAR image processing: the nonlocal paradigm. IEEE Signal Process. Mag. 31(4), 69–78 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Tupin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deledalle, CA., Denis, L., Ferraioli, G., Pascazio, V., Schirinzi, G., Tupin, F. (2018). Very-High-Resolution and Interferometric SAR: Markovian and Patch-Based Non-local Mathematical Models. In: Moser, G., Zerubia, J. (eds) Mathematical Models for Remote Sensing Image Processing. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66330-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66330-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66328-9

  • Online ISBN: 978-3-319-66330-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics