Skip to main content

Advances in Kernel Machines for Image Classification and Biophysical Parameter Retrieval

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Remote sensing data analysis is knowing an unprecedented upswing fostered by the activities of the public and private sectors of geospatial and environmental data analysis. Modern imaging sensors offer the necessary spatial and spectral information to tackle a wide range problems through Earth Observation, such as land cover and use updating, urban dynamics, or vegetation and crop monitoring. In the upcoming years even richer information will be available: more sophisticated hyperspectral sensors with high spectral resolution, multispectral sensors with sub-metric spatial detail or drones that can be deployed in very short time lapses. Besides such opportunities, these new and wealthy information sources also come with a price: the analysts are confronted with data showing large and complex feature characteristics. To deal with these new challenges, kernel methods have emerged as a valid, robust and successful framework. The intrinsic regularization implemented in these methods and their low sensitivity to data dimensionality make them natural candidates to solve current remote sensing problems. The flexibility offered by kernel methods allows us to treat heavily nonlinear tasks with elegant methodologies, while still using linear algebra. In the last decade, kernel methods in general, and support vector machines for classification and Gaussian processes for regression in particular, have become standard tools for geospatial data analysis. In this chapter, we first review the main concepts about kernel methods and their use in remote sensing. Then, we review examples of kernel methods for remote sensing image classification and biophysical parameter retrieval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://ipl.uv.es/artmo/.

References

  1. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) 5th Annual ACM Workshop on COLT, pp. 144–152. ACM Press, Pittsburgh, PA (1992)

    Google Scholar 

  3. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Mach Learn. The MIT Press, New York (2006)

    Google Scholar 

  4. Momma, M., Bennet, K.: Sparse kernel partial least squares regression. In: Proceedings of Conference on Learning Theory, COLT (2003)

    Google Scholar 

  5. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 43, 1351–1362 (2005)

    Google Scholar 

  7. Camps-Valls, G.: New machine-learning paradigm provides advantages for remote sensing. SPIE Newsroom (2008)

    Google Scholar 

  8. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote. Sens. 42, 1778–1790 (2004)

    Article  Google Scholar 

  9. Waske, B., Benediktsson, J.A.: Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote. Sens. 45, 3858–3866 (2007)

    Article  Google Scholar 

  10. Foody, G.M., Mathur, A.: Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification. Remote. Sens. Environ. 93, 107–117 (2004)

    Article  Google Scholar 

  11. Chi, M., Feng, R., Bruzzone, L.: Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 41(11), 1793–1799 (2008)

    Article  Google Scholar 

  12. Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote. Sens. Lett. 3, 93–97 (2006)

    Article  Google Scholar 

  13. Tuia, D., Ratle, F., Pozdnoukhov, A., Camps-Valls, G.: Multi-source composite kernels for urban image classification. IEEE Geosci. Remote. Sens. Lett. 7, 88–92 (2010)

    Article  Google Scholar 

  14. Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., Rojo-Álvarez, J., Martínez-Ramón, M.: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote. Sens. 46, 1822–1835 (2008). cited By 148

    Google Scholar 

  15. Plaza, A., Benediktsson, J.A., Boardman, J., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Tilton, J.: Recent advances in techniques for hyperspectral image processing. Remote. Sens. Environ. 113, S110–S122 (2008)

    Article  Google Scholar 

  16. Mountrakis, G., Ima, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote. Sens. 66, 247–259 (2011)

    Article  Google Scholar 

  17. Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A.: Advances in hyperspectral image classification. IEEE Signal Process. Mag. 31, 45–54 (2014)

    Article  Google Scholar 

  18. Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E.: A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 9, 165–193 (2007)

    Article  Google Scholar 

  19. Schaepman, M., Ustin, S., Plaza, A., Painter, T., Verrelst, J., Liang, S.: Earth system science related imaging spectroscopy-an assessment. Remote. Sens. Environ. 113, S123–S137 (2009)

    Article  Google Scholar 

  20. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote. Sens. Environ. 120, 25–36 (2012)

    Article  Google Scholar 

  21. Donlon, C., Berruti, B., Buongiorno, A., Ferreira, M.H., Féménias, P., Frerick, J., Goryl, P., Klein, U., Laur, H., Mavrocordatos, C., Nieke, J., Rebhan, H., Seitz, B., Stroede, J., Sciarra, R.: The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote. Sens. Environ. 120, 37–57 (2012)

    Article  Google Scholar 

  22. Camps-Valls, G., Tuia, D., Gómez-Chova, L., Malo, J. (eds.): Remote Sensing Image Processing. Morgan & Claypool, San Rafael (2011)

    MATH  Google Scholar 

  23. Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B.: Geov1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. part1: principles of development and production. Remote. Sens. Environ. 137, 299–309 (2013)

    Article  Google Scholar 

  24. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D.: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329, 834 (2010)

    Article  Google Scholar 

  25. Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B.E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E.J., Papale, D., Sottocornola, M., Vaccari, F., Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosciences 116, 1–16 (2011)

    Article  Google Scholar 

  26. Sarker, L.R., Nichol, J.E.: Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote. Sens. Environ. 115, 968–977 (2011)

    Article  Google Scholar 

  27. Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., Frankenberg, C., Huete, A., Zarco-Tejada, P., Lee, J.E., Moran, M.S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J.M., Griffis, T.J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. PNAS 111, E1327–E1333 (2014)

    Article  Google Scholar 

  28. Camps-Valls, G., Gómez-Chova, L., Vila-Francés, J., Amorós-López, J., Muñoz-Marí, J., Calpe-Maravilla, J.: Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote. Sens. Environ. 105, 23–33 (2006)

    Article  Google Scholar 

  29. Yang, F., White, M., Michaelis, A., Ichii, K., Hashimoto, H., Votava, P., Zhu, A.X., Nemani, R.: Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Trans. Geosci. Remote. Sens. 44, 3452–3461 (2006)

    Article  Google Scholar 

  30. Durbha, S., King, R., Younan, N.: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote. Sens. Environ. 107, 348–361 (2007)

    Article  Google Scholar 

  31. Tuia, D., Verrelst, J., Alonso-Chordá, L., Pérez-Cruz, F., Camps-Valls, G.: Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote. Sens. Lett. 8, 804–808 (2011)

    Article  Google Scholar 

  32. Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J., Moreno, J., Camps-Valls, G.: Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3. Remote. Sens. Environ. 118, 127–139 (2012)

    Article  Google Scholar 

  33. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in Mathematical Sciences. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  34. Reed, M.C., Simon, B.: Functional Analysis. Methods of Modern Mathematical Physics, vol. I. Academic Press, New York (1980)

    MATH  Google Scholar 

  35. Schölkopf, B., Smola, A.: Learning with Kernels - Support Vector Machines, Regularization, Optimization and Beyond. MIT Press Series, Cambridge (2002)

    Google Scholar 

  36. Camps-Valls, G., Bruzzone, L. (eds.): Kernel Methods for Remote Sensing Data Analysis. Wiley, UK (2009)

    MATH  Google Scholar 

  37. Burges, C.J.C.: Geometry and invariance in kernel based methods. In: Schölkopf, B., Burges, C.J.C. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1990)

    Google Scholar 

  38. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  39. Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, NIPS2001. Vancouver, vol. 13, pp. 682–688. MIT Press, Canada (2001)

    Google Scholar 

  40. Hsieh, C.J., Si, S., Dhillon, I.S.: Fast prediction for large-scale kernel machines. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems, Curran Associates, Inc. pp. 3689–3697 (2014)

    Google Scholar 

  41. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  42. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2002)

    MATH  Google Scholar 

  43. Gómez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103, 1560–1584 (2015)

    Article  Google Scholar 

  44. Sonnenburg, S., Rätsch, G., Schafer, C., Schölkopf, B.: Large scale multiple kernel learning. J. Mach. Learn. Res. 7, 1531–1565 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Tuia, D., Camps-Valls, G., Matasci, G., Kanevski, M.: Learning relevant image features with multiple kernel classification. IEEE Trans. Geosci. Remote. Sens. 48, 3780–3791 (2010)

    Article  Google Scholar 

  46. Gu, Y., Wang, S., Jia, X.: Spectral unmixing in multiple-kernel hilbert space for hyperspectral imagery. IEEE Trans. Geosci. Remote. Sens. 51, 3968–3981 (2013)

    Article  Google Scholar 

  47. Liu, K.H., Lin, Y.Y., Chen, C.S.: Linear spectral mixture analysis via multiple-kernel learning for hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 53, 2254–2269 (2015)

    Article  Google Scholar 

  48. Gu, J., Jiao, L., Yang, S., Liu, F., Hou, B., Zhao, Z.: A multi-kernel joint sparse graph for SAR image segmentation. IEEE J. Sel. Top. Appl. Earth Obs. 9, 1265–1285 (2016)

    Article  Google Scholar 

  49. Gu, Y., Wang, C., You, D., Zhang, Y., Wang, S., Zhang, Y.: Representative multiple-kernel learning for classification of hyperspectral imagery. IEEE Trans. Geosci. Remote. Sens. 7, 2852–2865 (2012)

    Article  Google Scholar 

  50. Cusano, C., Napoletano, P., Schettini, R.: Remote sensing image classification exploiting multiple kernel learning. IEEE Geosci. Remote. Sens. Lett. 12, 2331–2335 (2015)

    Article  Google Scholar 

  51. Gu, Y., Gao, G., Zuo, D., You, D.: Model selection and classification with multiple kernel learning for hyperspectral images via sparsity. IEEE J. Sel. Top. Appl. Earth Obs. 7, 2119–2130 (2014)

    Article  Google Scholar 

  52. Wang, Q., Gu, Y., Tuia, D.: Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 54(7), 3912–3927 (2016)

    Google Scholar 

  53. Wang, L., Hao, S., Wang, Q., Atkinson, P.M.: A multiple-mapping kernel for hyperspectral image classification. IEEE Geosci. Remote. Sens. Lett. 12, 978–982 (2015)

    Article  Google Scholar 

  54. Zhang, Y., Yang, H.L., Prasad, S., Pasolli, E., Jung, J., Crawford, M.: Ensemble multiple kernel active learning for classification of multisource remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. 8, 845–858 (2015)

    Article  Google Scholar 

  55. Sun, Z., Wang, C., Wang, H., Li, J.: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data. IEEE Geosci. Remote. Sens. Lett. 10, 1224–1228 (2013)

    Article  Google Scholar 

  56. Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 51, 4816–4829 (2013)

    Article  Google Scholar 

  57. Tuia, D., Camps-Valls, G.: Urban image classification with semisupervised multiscale cluster kernels. IEEE J. Sel. Top. Appl. Earth Obs. 4, 65–74 (2011)

    Article  Google Scholar 

  58. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Barnsley, M., Settle, J., Cutter, M., Lobb, D., Teston, F.: The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere. IEEE Trans. Geosci. Remote. Sens. 42, 1512–1520 (2004)

    Article  Google Scholar 

  60. Hajnsek, I., Bianchi, R., Davidson, M., Wooding, M.: The AgriSAR 2006 team: AgriSAR 2006 - Airborne SAR and optics campaigns for an improved monitoring of agricultural processes and practices. In: Fourth International Workshop on the Analysis of Multitemporal Remote Sensing Images. MultiTemp2007, Leuven, Belgium (2007)

    Google Scholar 

  61. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel target alignment. Technical Report 2001-087, NeuroCOLT (2001)

    Google Scholar 

  62. Guanter, L., Richter, R., Kaufmann, H.: On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. Int. J. Remote. Sens. 30, 1407–1424 (2009)

    Article  Google Scholar 

  63. Guanter, L., Ruiz-Verdú, A., Odermatt, D., Giardino, C., Simis, S., Estelles, V., Heege, T., Domínguez-Gómez, J.A., Moreno, J.: Atmospheric correction of ENVISAT/MERIS data over inland waters: validation for European lakes. Remote. Sens. Environ. 114, 467–480 (2010)

    Article  Google Scholar 

  64. Matasci, G., Longbotham, N., Pacifici, F,M,K., Tuia, D.: Understanding angular effects in VHR imagery and their significance for urban land-cover model portability: a study of two multi-angle in-track image sequences. ISPRS J. Int. Soc. Photogramm. Remote. Sens. 107, 99–111 (2015)

    Article  Google Scholar 

  65. Hong, G., Zhang, Y.: Radiometric normalization of IKONOS image using Quickbird image for urban area change detection. In: Proceedings of ISPRS 3rd International Symposium on Remote Sensing and Data Fusion Over Urban Areas, Tempe, AZ (2005)

    Google Scholar 

  66. Yang, Z., Mueller, R.: Heterogeneously sensed imagery radiometric response normalization for citrus grove change detection. In: Proceedings of SPIE Optics East, vol. 6761. Boston, MA (2007)

    Google Scholar 

  67. Tuia, D., Muñoz-Marí, J., Gómez-Chova, L., Malo, J.: Graph matching for adaptation in remote sensing. IEEE Trans. Geosci. Remote. Sens. 51, 329–341 (2013)

    Article  Google Scholar 

  68. Nielsen, A.A.: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. Image Process. 11, 293–305 (2002)

    Article  Google Scholar 

  69. Volpi, M., Camps-Valls, G., Tuia, D.: Spectral alignment of cross-sensor images with automated kernel canonical correlation analysis. ISPRS J. Int. Soc. Photogramm. Remote. Sens. 107, 50–63 (2015)

    Article  Google Scholar 

  70. Wang, C., Krafft, P., Mahadevan, S.: Manifold alignment. In: Ma, Y., Fu, Y. (eds.) Manifold Learning: Theory and Applications. CRC Press, Boca Raton (2011)

    Google Scholar 

  71. Wang, C., Mahadevan, S.: Heterogeneous domain adaptation using manifold alignment. In: International Joint Conference on Artificial Intelligence (IJCAI) (2011)

    Google Scholar 

  72. Tuia, D., Volpi, M., Trolliet, M., Camps-Valls, G.: Semisupervised manifold alignment of multimodal remote sensing images. IEEE Trans. Geosci. Remote. Sens. 52, 7708–7720 (2014)

    Article  Google Scholar 

  73. Yang, H., Crawford, M.: Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 54, 51–64 (2016)

    Article  Google Scholar 

  74. Yang, H., Crawford, M.: Domain adaptation with preservation of manifold geometry for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. 9, 543–555 (2016)

    Article  Google Scholar 

  75. Tuia, D., Marcos, D., Camps-Valls, G.: Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization. ISPRS J. Int. Soc. Photo. Remote Sens. 120, 1–12 (2016)

    Google Scholar 

  76. Liao, D., Qian, D., Zhou, J., Tang, Y.: A manifold alignment approach for hyperspectral image visualization with natural color. IEEE Trans. Geosci. Remote. Sens. 54, 3151–3162 (2016)

    Article  Google Scholar 

  77. Tuia, D., Camps-Valls, G.: Kernel manifold alignment for domain adaptation. PLoS One 11, e0148655 (2016)

    Article  Google Scholar 

  78. Schindler, K.: An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote. Sens. 50, 4534–4545 (2012)

    Article  Google Scholar 

  79. Tuia, D., Volpi, M., Moser, G.: Getting pixels and regions to agree with conditional random fields. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Beijing, China (2016)

    Google Scholar 

  80. Moser, G., Serpico, S.B.: Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote. Sens. 51, 2734–2752 (2013)

    Article  Google Scholar 

  81. Volpi, M., Ferrari, V.: Structured prediction for urban scene semantic segmentation with geographic context. In: Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland (2015)

    Google Scholar 

  82. Tuia, D., Muñoz-Marí, J., Kanevski, M., Camps-Valls, G.: Structured output SVM for remote sensing image classification. J. Signal Proc. Sys. 65, 457–468 (2011)

    Article  Google Scholar 

  83. Volpi, M., Ferrari, V.: Semantic segmentation of urban scenes by learning local class interactions. In: IEEE CVPR Workshop “Looking from above: when Earth observation meets vision”, Boston, MA (2015)

    Google Scholar 

  84. Li, W., Du, Q., Xiong, M.: Kernel collaborative representation with tikhonov regularization for hyperspectral image classification. IEEE Geosci. Remote. Sens. Lett. 12, 48–52 (2015)

    Article  Google Scholar 

  85. Liu, J., Wu, Z., Li, J., Plaza, A., Yuan, Y.: Probabilistic-kernel collaborative representation for spatial-spectral hyperspectral image classification. IEEE Trans. Geosci. Remote. Sens. 54, 2371–2384 (2016)

    Article  Google Scholar 

  86. de Morsier, F., Borgeaud, M., Gass, V., Thiran, J.P., Tuia, D.: Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images. IEEE Trans. Geosci. Remote. Sens. 54, 3410–3420 (2016)

    Article  Google Scholar 

  87. Camps-Valls, G., Verrelst, J., Muoz-Mar, J., Laparra, V., Mateo-Jiménez, F., Gomez-Dans, J.: A survey on Gaussian processes for earth observation data analysis. IEEE Geosci. Remote. Sens. Mag. 4, 58–78 (2016)

    Article  Google Scholar 

  88. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  89. Sampson, P., Guttorp, P.: Nonparametric estimation of nonstationary spatial covariance structure. J. Am. Stat. Assoc. Publ. 87, 108–119 (1992)

    Article  Google Scholar 

  90. Camps-Valls, G., Martínez-Ramón, M., Rojo-Álvarez, J.L., Muñoz-Marí, J.: Non-linear system identification with composite relevance vector machines. IEEE Signal Proc. Lett. 14, 279–282 (2007)

    Article  Google Scholar 

  91. Álvarez, M.A., Luengo, D., Lawrence, N.D.: Linear latent force models using gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2693–2705 (2013)

    Article  Google Scholar 

  92. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Google Scholar 

  93. Tipping, M.: The relevance vector machine. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12. MIT Press, Cambridge (2000)

    Google Scholar 

  94. Verrelst, J., Alonso, L., Camps-Valls, G., Delegido, J., Moreno, J.: Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans. Geosci. Remote. Sens. 50, 1832–1843 (2012)

    Article  Google Scholar 

  95. Verrelst, J., Alonso, L., Rivera Caicedo, J., Moreno, J., Camps-Valls, G.: Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 6, 867–874 (2013)

    Article  Google Scholar 

  96. Bazi, Y., Melgani, F.: Toward an optimal svm classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote. Sens. 44, 3374–3385 (2006)

    Article  Google Scholar 

  97. Archibald, R., Fann, G.: Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci. Remote. Sens. Lett. 4, 674–677 (2007)

    Article  Google Scholar 

  98. Pal, M., Foody, G.: Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote. Sens. 48, 2297–2307 (2010)

    Article  Google Scholar 

  99. Verrelst, J., Rivera, J., Veroustraete, F., Muñoz Marí, J., Clevers, J., Camps-Valls, G., Moreno, J.: Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - a comparison. ISPRS J. Int. Soc. Photogramm. Remote. Sens. 108, 260–272 (2015)

    Article  Google Scholar 

  100. Van Wittenberghe, S., Verrelst, J., Rivera, J., Alonso, L., Moreno, J., Samson, R.: Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol. B Biol. 134, 37–48 (2014)

    Article  Google Scholar 

  101. Verrelst, J., Rivera, J.G., Gitelson, A., Delegido, J., Moreno, J., Camps-Valls, G.: Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 52, 554–567 (2016)

    Google Scholar 

  102. Rivera Caicedo, J., Verrelst, J., Muñoz-Marí, J., Moreno, J., Camps-Valls, G.: Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7, 1249–1259 (2014)

    Article  Google Scholar 

  103. Jagermeyr, J., Gerten, D., Lucht, W., Hostert, P., Migliavacca, M., Nemani, R.: A high-resolution approach to estimating ecosystem respiration at continental scales using operational satellite data. Glob. Chang. Biol. 20, 1191–1210 (2014)

    Article  Google Scholar 

  104. Verrelst, J., Rivera, J., Moreno, J., Camps-Valls, G.: Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Int. Soc. Photogramm. Remote. Sens. 86, 157–167 (2013)

    Article  Google Scholar 

  105. Campos-Taberner, M., García-Haro, F., Moreno, A., Gilabert, M., Sánchez-Ruiz, S., Martínez, B., Camps-Valls, G.: Mapping leaf area index with a smartphone and Gaussian processes. IEEE Geosci. Remote. Sens. Lett. 12, 2501–2505 (2015)

    Article  Google Scholar 

  106. O’Hagan, A.: Bayesian analysis of computer code outputs: a tutorial. Reliab. Eng. Syst. Saf. 91, 1290–1300 (2006)

    Article  Google Scholar 

  107. Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63, 425–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  108. Conti, S., Gosling, J., Oakley, J., O’Hagan, A.: Gaussian process emulation of dynamic computer codes. Biometrika 96, 663–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. Petropoulos, G., Wooster, M., Carlson, T., Kennedy, M., Scholze, M.: A global Bayesian sensitivity analysis of the 1D simsphere soil vegetation atmospheric transfer (SVAT) model using Gaussian model emulation. Ecol. Model. 220, 2427–2440 (2009)

    Article  Google Scholar 

  110. Castelletti, A., Galelli, S., Ratto, M., Soncini-Sessa, R., Young, P.: A general framework for dynamic emulation modelling in environmental problems. Environ. Model. Softw. 34, 5–18 (2012)

    Article  Google Scholar 

  111. Bounceur, N., Crucifix, M., Wilkinson, R., et al.: Global sensitivity analysis of the climate-vegetation system to astronomical forcing: an emulator-based approach. Earth Syst. Dyn. Discuss. 5, 901–943 (2014)

    Article  Google Scholar 

  112. Rivera, J.P., Verrelst, J., Gómez-Dans, J., Muñoz Marí, J., Moreno, J., Camps-Valls, G.: An emulator toolbox to approximate radiative transfer models with statistical learning. Remote. Sens. 7, 9347 (2015)

    Google Scholar 

  113. Gómez-Dans, J.L., Lewis, P.E., Disney, M.: Efficient emulation of radiative transfer codes using Gaussian processes and application to land surface parameter inferences. Remote. Sens. 8, 119 (2016)

    Article  Google Scholar 

  114. Verrelst, J., Sabater, N., Rivera, J.P., Muñoz-Marí, J., Vicent, J., Camps-Valls, G., Moreno, J.: Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote. Sens. 8, 673 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors wish to deeply acknowledge the collaboration, comments, and fruitful discussions with many researchers during the last decade on GP models for remote sensing and geoscience applications: Miguel Lázaro-Gredilla (Vicarious), Robert Jenssen (Univ. Tromsø, Norway), Martin Jung (MPI, Jena, Germany), and Sancho Salcedo-Saez (Univ. Alcalá, Madrid, Spain).

   This work has been partly supported by the Swiss National Science Foundation (grant PZ00P2-136827, http://p3.snf.ch/project-136827), by the Spanish Ministry of Economy and Competitiveness under project ESP2013-48458-C4-1-P, and the European Research Council (ERC) under the ERC-CoG-2014 SEDAL under grant agreement 647423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devis Tuia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuia, D., Volpi, M., Verrelst, J., Camps-Valls, G. (2018). Advances in Kernel Machines for Image Classification and Biophysical Parameter Retrieval. In: Moser, G., Zerubia, J. (eds) Mathematical Models for Remote Sensing Image Processing. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-66330-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66330-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66328-9

  • Online ISBN: 978-3-319-66330-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics