Skip to main content

HIV Infection as a Model of Accelerated Immunosenescence

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Since its discovery in 1983, HIV-1 has become the most extensively studied pathogen in history. Massive CD4+ T-cell depletion and sustained immune activation and inflammation are hallmarks of HIV-1 infection. However, many insights underlying the onset of immunodeficiency that develops during HIV-1 infection remain to be resolved. In recent years, an intriguing parallel between HIV-1 infection and aging has emerged: many of the alterations that affect innate and adaptive immune cell compartments in HIV-infected patients are reminiscent of the process of immune aging, characteristic of old age. These alterations, of which the alleged cause is the systemic chronic immune activation established in patients, likely participate to the decline of immune competence with HIV disease progression. Of note, the comparison between HIV-1-infected patients and uninfected elderly adults goes beyond the sole onset of immunosenescence and extends to the deterioration of a number of physiological functions related to inflammation and systemic aging. Our understanding of the precise link between immune activation and aging in HIV-1 infection is complicated by the influence of coinfections and lifestyle factors. Developing rational interventions to reduce the hyper-inflammatory status and age resembling manifestations in HIV-1-infected patients are major goals of the HIV community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alter G et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106:3366–3369

    Article  CAS  PubMed  Google Scholar 

  • Alter G et al (2009) HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol 83:6798–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amorosa V, Tebas P (2006) Bone disease and HIV infection. Clin Infect Dis 42:108–114

    Article  PubMed  Google Scholar 

  • Ancuta P et al (2008) Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 3:e2516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    Article  CAS  PubMed  Google Scholar 

  • Angin M et al (2016) Preservation of lymphopoietic potential and virus suppressive capacity by CD8+ T cells in HIV-2-infected controllers. J Immunol 197(7):2787–2795

    Article  CAS  PubMed  Google Scholar 

  • Anzala AO et al (2000) Acute sexually transmitted infections increase human immunodeficiency virus type 1 plasma viremia, increase plasma type 2 cytokines, and decrease CD4 cell counts. J Infect Dis 182:459–466

    Article  CAS  PubMed  Google Scholar 

  • Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73:975–983

    Article  PubMed  Google Scholar 

  • Appay V et al (2011) Old age and anti-cytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS 25:1813–1822

    Article  CAS  PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    Article  CAS  PubMed  Google Scholar 

  • Azzoni L et al (2002) Sustained impairment of IFN-gamma secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol 168:5764–5770

    Article  CAS  PubMed  Google Scholar 

  • Bastard JP et al (2015) Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother 70:1816–1824

    CAS  PubMed  Google Scholar 

  • Bayard C et al (2016) Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol 46:1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Best C et al (2015) Sitagliptin reduces inflammation and chronic immune cell activation in HIV+ adults with impaired glucose tolerance. J Clin Endocrinol Metab 100:2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts MR et al (2001) Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75:11983–11991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beziat V et al (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozzano F et al (2011) NK-cell phenotype at interruption underlies widely divergent duration of CD4+-guided antiretroviral treatment interruption. Int Immunol 23:109–118

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM et al (2006a) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM, Price DA, Douek DC (2006b) HIV disease: fallout from a mucosal catastrophe? Nat Immunol 7:235–239

    Article  CAS  PubMed  Google Scholar 

  • Briceno O et al (2016) Reduced naive CD8(+) T-cell priming efficacy in elderly adults. Aging Cell 15:14–21

    Article  CAS  PubMed  Google Scholar 

  • Brunetta E, Hudspeth KL, Mavilio D (2010) Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol 88:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK (2000) Aging, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 121:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    Article  CAS  PubMed  Google Scholar 

  • Byakwaga H et al (2011) Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial. J Infect Dis 204:1532–1540

    Article  CAS  PubMed  Google Scholar 

  • Campillo-Gimenez L et al (2014) Neutrophils in antiretroviral therapy-controlled HIV demonstrate hyperactivation associated with a specific IL-17/IL-22 environment. J Allergy Clin Immunol 134(5):1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Clark DR et al (2000) T-cell progenitor function during progressive human immunodeficiency virus-1 infection and after antiretroviral therapy. Blood 96:242–249

    CAS  PubMed  Google Scholar 

  • Cohen HJ, Pieper CF, Harris T, Rao KM, Currie MS (1997) The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci 52:M201–M208

    Article  CAS  PubMed  Google Scholar 

  • Conti A et al (2007) Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain Res Rev 54:205–218

    Article  CAS  PubMed  Google Scholar 

  • Crowe SM et al (2010) The macrophage: the intersection between HIV infection and atherosclerosis. J Leukoc Biol 87:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Ettorre G et al (2015) Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the “Probio-HIV” clinical trial. PLoS One 10:e0137200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decrion AZ, Dichamp I, Varin A, Herbein G (2005) HIV and inflammation. Curr HIV Res 3:243–259

    Article  CAS  PubMed  Google Scholar 

  • Desquilbet L et al (2007) HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 62(11):1279–1286. AIDS In Press

    Article  PubMed  Google Scholar 

  • Dion ML et al (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21:757–768

    Article  CAS  PubMed  Google Scholar 

  • Doisne JM et al (2004) CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J Immunol 173:2410–2418

    Article  CAS  PubMed  Google Scholar 

  • Douek DC et al (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:95–98

    Article  CAS  PubMed  Google Scholar 

  • Dunn HS et al (2002) Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis 186:15–22

    Article  CAS  PubMed  Google Scholar 

  • Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion? Immunol Today 18:450–454

    Article  CAS  PubMed  Google Scholar 

  • Effros RB et al (1996) Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 10:F17–F22

    Article  CAS  PubMed  Google Scholar 

  • Erlandson KM, Jiang Y, Debanne SM, McComsey GA (2015) Rosuvastatin worsens insulin resistance in HIV-infected adults on antiretroviral therapy. Clin Infect Dis 61:1566–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlandson KM, Jiang Y, Debanne SM, McComsey GA (2016) Effects of 96 weeks of rosuvastatin on bone, muscle, and fat in HIV-infected adults on effective antiretroviral therapy. AIDS Res Hum Retrovir 32(4):311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre-Mersseman V et al (2014) Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS 28:2677–2682

    Article  CAS  PubMed  Google Scholar 

  • Fauci AS, Mavilio D, Kottilil S (2005) NK cells in HIV infection: paradigm for protection or targets for ambush. Nat Rev Immunol 5:835–843

    Article  CAS  PubMed  Google Scholar 

  • Favre D et al (2011) HIV disease progression correlates with the generation of dysfunctional naive CD8low T cells. Blood 117(7):2189–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira C, Barthlott T, Garcia S, Zamoyska R, Stockinger B (2000) Differential survival of naive CD4 and CD8 T cells. J Immunol 165:3689–3694

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci L et al (1999) Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc 47:639–646

    Article  CAS  PubMed  Google Scholar 

  • Foulds KE et al (2002) Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168:1528–1532

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Valensin S, Fagnoni F, Barbi C, Bonafe M (1999) Biomarkers of immunosenescence within an evolutionary perspective: the challenge of heterogeneity and the role of antigenic load. Exp Gerontol 34:911–921

    Article  CAS  PubMed  Google Scholar 

  • Fried LP et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156

    Article  CAS  PubMed  Google Scholar 

  • Funderburg NT et al (2015) Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr 68:396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamadia LE et al (2004) The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172:6107–6114

    Article  CAS  PubMed  Google Scholar 

  • Gautier D, Beq S, Cortesao CS, Sousa AE, Cheynier R (2007) Efficient thymopoiesis contributes to the maintenance of peripheral CD4 T cells during chronic human immunodeficiency virus type 2 infection. J Virol 81:12685–12688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George VK et al (2015) HIV infection worsens age-associated defects in antibody responses to influenza vaccine. J Infect Dis 211:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginaldi L, De Martinis M, Monti D, Franceschi C (2005) Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 26:79–84

    Article  CAS  PubMed  Google Scholar 

  • Giorgi JV et al (1993) Elevated levels of CD38+ CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS cohort study. J Acquir Immune Defic Syndr 6:904–912

    CAS  PubMed  Google Scholar 

  • Giorgi JV et al (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179:859–870

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SR et al (2013) Dipeptidyl peptidase IV inhibition does not adversely affect immune or virological status in HIV infected men and women: a pilot safety study. J Clin Endocrinol Metab 98:743–751

    Article  CAS  PubMed  Google Scholar 

  • Gougeon ML, Montagnier L (1993) Apoptosis in AIDS. Science 260:1269–1270

    Article  CAS  PubMed  Google Scholar 

  • Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112:345–350

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72:233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Group I.S.S et al (2015) Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med 373:795–807

    Article  CAS  Google Scholar 

  • Groux H et al (1992) Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med 175:331–340

    Article  CAS  PubMed  Google Scholar 

  • Guo X et al (2016) The role of HIV-1 in affecting the proliferation ability of HPCs derived from BM. J Acquir Immune Defic Syndr 71:467–473

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK et al (2013) Pentoxifylline, inflammation, and endothelial function in HIV-infected persons: a randomized, placebo-controlled trial. PLoS One 8:e60852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattab S et al (2014) Comparative impact of antiretroviral drugs on markers of inflammation and immune activation during the first two years of effective therapy for HIV-1 infection: an observational study. BMC Infect Dis 14:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazenberg MD et al (2003) Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17:1881–1888

    Article  PubMed  Google Scholar 

  • Hearps AC et al (2012a) HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS 26:843–853

    Article  CAS  PubMed  Google Scholar 

  • Hearps AC et al (2012b) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875

    Article  CAS  PubMed  Google Scholar 

  • Henson SM et al (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest 124:4004–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey-Cunningham WJ et al (2015) Early antiretroviral therapy with raltegravir generates sustained reductions in HIV reservoirs but not lower T-cell activation levels. AIDS 29:911–919

    Article  CAS  PubMed  Google Scholar 

  • Homann D, Teyton L, Oldstone MB (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7:913–919

    Article  CAS  PubMed  Google Scholar 

  • Hsue PY et al (2004) Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. Circulation 109:1603–1608

    Article  PubMed  Google Scholar 

  • Hsue PY et al (2006) Increased carotid intima-media thickness in HIV patients is associated with increased cytomegalovirus-specific T-cell responses. AIDS 20:2275–2283

    Article  PubMed  Google Scholar 

  • Hunt PW et al (2011) Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 203:1474–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaworowski A et al (2006) Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J Infect Dis 193:693–697

    Article  CAS  PubMed  Google Scholar 

  • Jing Y et al (2009) Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol 70:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Scheidereit C, Roeder RG (1988) Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kappa B) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci U S A 85:4700–4704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley KW, Arkins S, Minshall C, Liu Q, Dantzer R (1996) Growth hormone, growth factors and hematopoiesis. Horm Res 45:38–45

    Article  CAS  PubMed  Google Scholar 

  • Kendall MD et al (1990) Reversal of aging changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res 261:555–564

    Article  CAS  PubMed  Google Scholar 

  • Kovacs JA et al (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 335:1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Kyoizumi S et al (2013) Age-associated changes in the differentiation potentials of human circulating hematopoietic progenitors to T- or NK-lineage cells. J Immunol 190:6164–6172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann R et al (2015) A comparative phase 1 clinical trial to identify anti-infective mechanisms of vitamin D in people with HIV infection. AIDS 29:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15:965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lelievre JD et al (2012) Initiation of c-ART in HIV-1 infected patients is associated with a decrease of the metabolic activity of the thymus evaluated using FDG–PET/computed tomography. J Acquir Immune Defic Syndr 61:56–63

    Article  PubMed  Google Scholar 

  • Levy Y et al (2009) Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 119:997–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liovat AS et al (2012) Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection. PLoS One 7:e46143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE (1993) T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood 82:2585–2594

    CAS  PubMed  Google Scholar 

  • Markowitz M et al (2014) A randomized open-label study of 3- versus 5-drug combination antiretroviral therapy in newly HIV-1-infected individuals. J Acquir Immune Defic Syndr 66:140–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mavilio D et al (2005) Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci U S A 102:2886–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavilio D et al (2006) Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection. J Exp Med 203:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur JC et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology 43:2245–2252

    Article  CAS  PubMed  Google Scholar 

  • McCann SM et al (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826

    Article  CAS  PubMed  Google Scholar 

  • Merrill JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Merrill JE, Koyanagi Y, Chen IS (1989) Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyaard L et al (1992) Programmed death of T cells in HIV-1 infection. Science 257:217–219

    Article  CAS  PubMed  Google Scholar 

  • Moir S, Fauci AS (2014) B-cell exhaustion in HIV infection: the role of immune activation. Curr Opin HIV AIDS 9:472–477

    Article  CAS  PubMed  Google Scholar 

  • Moir S et al (2001) HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci U S A 98:10362–10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir S et al (2008a) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205:1797–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir S et al (2008b) Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J Infect Dis 197:572–579

    Article  PubMed  Google Scholar 

  • Molina JM, Scadden DT, Byrn R, Dinarello CA, Groopman JE (1989) Production of tumor necrosis factor alpha and interleukin 1 beta by monocytic cells infected with human immunodeficiency virus. J Clin Invest 84:733–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya CJ et al (2012) Randomized clinical trial of lovastatin in HIV-infected, HAART naive patients (NCT00721305). J Infect 65:549–558

    Article  PubMed  Google Scholar 

  • Morris L et al (1998) HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 188:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moses A, Nelson J, Bagby GC Jr (1998) The influence of human immunodeficiency virus-1 on hematopoiesis. Blood 91:1479–1495

    CAS  PubMed  Google Scholar 

  • Nakanjako D et al (2015) Atorvastatin reduces T-cell activation and exhaustion among HIV-infected cART-treated suboptimal immune responders in Uganda: a randomised crossover placebo-controlled trial. Tropical Med Int Health 20:380–390

    Article  CAS  Google Scholar 

  • Napolitano LA et al (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Pacanowski J et al (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98:3016–3021

    Article  CAS  PubMed  Google Scholar 

  • Papagno L et al (2002) Comparison between HIV- and CMV-specific T cell responses in long-term HIV infected donors. Clin Exp Immunol 130:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagno L et al (2004) Immune activation and CD8(+) T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2:E20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parmigiani A et al (2013) Impaired antibody response to influenza vaccine in HIV-infected and uninfected aging women is associated with immune activation and inflammation. PLoS One 8:e79816

    Article  PubMed  PubMed Central  Google Scholar 

  • Paton NI et al (2012) Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA 308:353–361

    Article  CAS  PubMed  Google Scholar 

  • Pensieroso S et al (2013) B-cell subset alterations and correlated factors in HIV-1 infection. AIDS 27:1209–1217

    Article  PubMed  Google Scholar 

  • Piconi S et al (2011) Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 118:3263–3272

    Article  CAS  PubMed  Google Scholar 

  • Pommier JP et al (1997) Immunosenescence in HIV pathogenesis. Virology 231:148–154

    Article  CAS  PubMed  Google Scholar 

  • Redd AD et al (2015) Decreased monocyte activation with daily acyclovir use in HIV-1/HSV-2 coinfected women. Sex Transm Infect 91:485–488

    Article  PubMed  Google Scholar 

  • Reeves RK et al (2015) Antigen-specific NK cell memory in rhesus macaques. Nat Immunol 16:927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieckmann P, Poli G, Fox CH, Kehrl JH, Fauci AS (1991) Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors. J Immunol 147:2922–2927

    CAS  PubMed  Google Scholar 

  • Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA (1995) CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest 95:2061–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy JP et al (2015) Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med 16:48–56

    Article  CAS  PubMed  Google Scholar 

  • Sauce D et al (2011) HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood 117:5142–5151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauce D et al (2012) Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J Immunol 189:5541–5548

    Article  CAS  PubMed  Google Scholar 

  • Schouten J et al (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59:1787–1797

    Article  CAS  PubMed  Google Scholar 

  • Schuetz A et al (2014) Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog 10:e1004543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scutellari PN, Orzincolo C, Guarnelli EM (1996) Periodontal disease in patients with HIV infection. Radiographic study. Radiol Med (Torino) 92:562–568

    CAS  Google Scholar 

  • Silvestri G et al (2003) Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441–452

    Article  CAS  PubMed  Google Scholar 

  • Simmons A, Aluvihare V, McMichael A (2001) Nef triggers a transcriptional program in T cells imitating single- signal T cell activation and inducing HIV virulence mediators. Immunity 14:763–777

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61

    Article  CAS  PubMed  Google Scholar 

  • Soumelis V et al (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98:906–912

    Article  CAS  PubMed  Google Scholar 

  • Sousa AE, Carneiro J, Meier-Schellersheim M, Grossman Z, Victorino RM (2002) CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169:3400–3406

    Article  CAS  PubMed  Google Scholar 

  • Stockmann M et al (2000) Mechanisms of epithelial barrier impairment in HIV infection. Ann N Y Acad Sci 915:293–303

    Article  CAS  PubMed  Google Scholar 

  • Swingler S et al (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–103

    Article  CAS  PubMed  Google Scholar 

  • Tenorio AR et al (2015) Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy – ACTG A5286. J Infect Dis 211:780–790

    Article  CAS  PubMed  Google Scholar 

  • Valcour VG, Shikuma CM, Watters MR, Sacktor NC (2004) Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18(Suppl 1):S79–S86

    Article  PubMed  PubMed Central  Google Scholar 

  • van Lelyveld SF et al (2015) Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, placebo-controlled randomized trial. PLoS One 10:e0132430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesterbacka J, Barqasho B, Haggblom A, Nowak P (2015) Effects of co-trimoxazole on microbial translocation in HIV-1 infected patients initiating antiretroviral therapy. AIDS Res Hum Retrovir 31:830–836

    Article  CAS  PubMed  Google Scholar 

  • Villinger F et al (2001) Chronic immune stimulation accelerates SIV-induced disease progression. J Med Primatol 30:254–259

    Article  CAS  PubMed  Google Scholar 

  • Wallace DL et al (2006) Prolonged exposure of naive CD8+ T cells to interleukin-7 or interleukin-15 stimulates proliferation without differentiation or loss of telomere length. Immunology 119:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallet MA et al (2015) Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects. BMC Immunol 16:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weaver JD et al (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378

    Article  CAS  PubMed  Google Scholar 

  • Weiss L, Haeffner-Cavaillon N, Laude M, Gilquin J, Kazatchkine MD (1989) HIV infection is associated with the spontaneous production of interleukin-1 (IL-1) in vivo and with an abnormal release of IL-1 alpha in vitro. AIDS 3:695–699

    Article  CAS  PubMed  Google Scholar 

  • Wittkop L et al (2013) Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: the ANRS CO3 Aquitaine Cohort. J Infect Dis 207:622–627

    Article  CAS  PubMed  Google Scholar 

  • Wolthers KC et al (1996) T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Yang OO, Kelesidis T, Cordova R, Khanlou H (2014) Immunomodulation of antiretroviral drug-suppressed chronic HIV-1 infection in an oral probiotic double-blind placebo-controlled trial. AIDS Res Hum Retrovir 30:988–995

    Article  CAS  PubMed  Google Scholar 

  • Yi TJ et al (2013) A randomized controlled pilot trial of valacyclovir for attenuating inflammation and immune activation in HIV/herpes simplex virus 2-coinfected adults on suppressive antiretroviral therapy. Clin Infect Dis 57:1331–1338

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Appay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Appay, V., Sauce, D., Kelleher, A.D. (2018). HIV Infection as a Model of Accelerated Immunosenescence. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_50-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics