Skip to main content

Definitions in Polytopes

  • Chapter
  • First Online:
Book cover Multi-shell Polyhedral Clusters

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 10))

Abstract

Multi-shell clusters represent complex structures, the study of which needs rigorous definitions in graph theory, geometry, set theory, etc. Within this chapter, main definitions for polyhedra, regular (Platonic) polyhedra, semi-regular and uniform (Archimedean, Catalan, Johnson’s) polyhedra are given. Then, higher dimensional polytopes are introduced, basically the regular polytopes. Euler formula for polyhedra, and then the alternating sum of higher ranked facets are used to confirm an assumed structure. Abstract polytopes, posets (replacing the dimension concept with that of rank), Hässe diagrams are also discussed. Polytope realization is exemplified by P-centered clusters and “cell-in-cell” clusters, as the simplest 4-dimensional/ranked structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balinski ML (1961) On the graph structure of convex polyhedra in n-space. Pac J Math 11(2):431–434

    Article  Google Scholar 

  • Buekenhout F, Parker M (1998) The number of nets of the regular convex polytopes in dimension ≤4. Discret Math 186:69–94

    Article  Google Scholar 

  • Catalan E (1865) Mémoire sur la Théorie des Polyèdres. J de l’École Polytechnique (Paris) 41:1–71

    Google Scholar 

  • Coxeter HSM (1934) Discrete groups generated by reflections. Ann Math 35(3):588–621

    Article  Google Scholar 

  • Coxeter HSM (1940) Regular and semi-regular polytopes. J Math Zeit 46:380–407

    Article  Google Scholar 

  • Coxeter HSM (1973) Regular polytopes, 3rd edn. Dover, New York, NY

    Google Scholar 

  • Coxeter HSM (1974) Regular complex polytopes. Cambridge University Press, Cambridge

    Google Scholar 

  • Coxeter HSM (1982) Ten toroids and fifty-seven hemi-dodecahedra. Geom Dedicata 13:87–99

    Article  Google Scholar 

  • Coxeter HSM (1984) A symmetrical arrangement of eleven hemi-icosahedra. Ann Discrete Math 20:103–114

    Google Scholar 

  • Coxeter HSM, Longuet-Higgins MS, Miller JCP (1954) Uniform Polyhedra. Phil Trans A, 403–439.

    Google Scholar 

  • Cromwell PR (1997) Polyhedra. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis MW (2007) The geometry and topology of coxeter groups, London Mathematical Society monographs series, vol 32. Princeton University Press, Princeton, NJ

    Google Scholar 

  • de la Vaissière B, Fowler PW, Deza M (2001) Codes in Platonic, Archimedean, Catalan, and related polyhedra: a model for maximum addition patterns in chemical cages. J Chem Inf Comput Sci 41:376–386

    Article  Google Scholar 

  • Euler L (1736) Solutio problematisad geometriam situs pertinentis. Comment Acad Sci I Petropolitanae 8:128–140

    Google Scholar 

  • Euler L (1752–1753) Elementa doctrinae solidorum. Novi Comment Acad Sci I Petropolitanae 4:109–160

    Google Scholar 

  • Grünbaum B (2003) Convex polytopes. In: Kaibel V, Klee V, Ziegler GM (eds) Graduate texts in mathematics, vol 221, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Grünbaum B (2009) Elemente der Mathematik 64 (3):89–101; Reprinted in Pitici M (ed) (2011) The best writing on mathematics 2010. Princeton University Press, pp 18–31

    Google Scholar 

  • Grünbaum B, Shephard GC (1988) Duality of polyhedra. In: Senechal M, Fleck GM (eds) Shaping space – a polyhedral approach. Birkhäuser, Boston, MA, pp 205–211

    Google Scholar 

  • Heath TL (1981) A history of Greek mathematics. Dover, New York, NY

    Google Scholar 

  • Johnson NW (1966) Convex solids with regular faces. Can J Math 18:169–200 (The theory of uniform polytopes and honeycombs. Ph.D. Dissertation, University of Toronto)

    Google Scholar 

  • Leinster T (2008) The Euler characteristic of a category. Doc Math 13:21–49

    Google Scholar 

  • Lyusternik LA (1963) Convex figures and polyhedra. Dover, New York, NY

    Google Scholar 

  • McMullen P, Schulte P (2002) Abstract regular polytopes, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Parvan-Moldovan A, Diudea MV (2015) Cell@cell higher dimensional structures. Stud Univ Babes-Bolyai Chem 60(2):379–388

    Google Scholar 

  • Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel, 1950)

    Google Scholar 

  • Schulte E (1980) Regular incidence complexes. PhD Dissertation, Dortmund University

    Google Scholar 

  • Schulte E (1983a) Regulire Inzidenzkomplexe, II. Geom Dedicata 14:33–56

    Google Scholar 

  • Schulte E (1983b) Regulire Inzidenzkomplexe, III. Geom Dedicata 14:57–79

    Google Scholar 

  • Schulte E (1983c) On arranging regular incidence-complexes as faces of higher-dimensional ones. Eur J Comb 4:375–384

    Article  Google Scholar 

  • Schulte E (1985) Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures. J Comb Theory Ser A 40(2):305–330

    Article  Google Scholar 

  • Schulte E (2004) Symmetry of polytopes and polyhedra. In: Goodman JE, O’Rourke J (eds) Handbook of discrete and computational geometry, 2nd edn. Chapman & Hall, New York, NY

    Google Scholar 

  • Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Crystallogr A 70:203–216

    Article  CAS  Google Scholar 

  • Skilling J (1975) The complete set of uniform polyhedra. Philos Trans R Soc Lond Ser A Math Phys Sci 278(1278):111–135

    Article  Google Scholar 

  • Sopov SP (1970) Proof of the completeness of the enumeration of uniform polyhedra. Ukrain Geom Sbornik 8:139–156

    Google Scholar 

  • Steinitz E (1922) Polyeder und Raumeinteilungen, Encyclopädie der mathematischen Wissenschaften, Band 3 (Geometries) (IIIAB12), pp 1–139, Abgeschlossen am 31 August 1916

    Google Scholar 

  • Tits J (1964) Algebraic and abstract simple groups. Ann Math 2nd Ser 80(2):313–329

    Article  Google Scholar 

  • Tits J, Weiss RM (2002) Moufang polygons. Springer monographs in mathematics. Springer, Berlin

    Book  Google Scholar 

  • Wenninger M (1974) Polyhedron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Wenninger M (1983) Dual models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ziegler GM (1995) Lectures on polytopes, graduate texts in mathematics 152. Chap. 4 “Steinitz’ theorem for 3-polytopes”. Springer, Berlin, p 103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diudea, M.V. (2018). Definitions in Polytopes. In: Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-64123-2_3

Download citation

Publish with us

Policies and ethics