Skip to main content

The Future of CRISPR Applications in the Lab, the Clinic and Society

  • Chapter
  • First Online:
Precision Medicine, CRISPR, and Genome Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1016))

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats) has emerged as one of the premiere biological tools of the century. Even more so than older genome editing techniques such as TALENs and ZFNs, CRISPR provides speed and ease-of-use heretofore unheard of in agriculture, the environment and human health. The ability to map the function of virtually every component of the genome in a scalable, multiplexed manner is unprecedented. Once those regions have been explored, CRISPR also presents an opportunity to take advantage of endogenous cellular repair pathways to change and precisely edit the genome [1–3]. In the case of human health, CRISPR operates as both a tool of discovery and a solution to fundamental problems behind disease and undesirable mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim JH, Kim DW, Kim JS. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20. doi:10.1016/j.stem.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  2. Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25(1):67–79. doi:10.1038/cr.2014.160.

    Article  CAS  PubMed  Google Scholar 

  3. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551–3. doi:10.1038/nbt.2884. Erratum in: Nat Biotechnol. 2014;32(9):952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. Erratum in: Nature 2001;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]. Nature 2001;412(6846):565.

    Article  CAS  PubMed  Google Scholar 

  5. Wetterstrand KA. DNA sequencing costs: data from the NHGRI genome sequencing program (GSP). www.genome.gov/sequencingcostsdata. Accessed 28 Jan 2017.

  6. Elgar G, Vavouri T. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet. 2008;24(7):344–52. doi:10.1016/j.tig.2008.04.005.

    Article  CAS  PubMed  Google Scholar 

  7. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi:10.1038/nature11247.

    Article  Google Scholar 

  8. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192–7. doi:10.1038/nature15521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, Cheng C, Regev A, Zhang F. High-resolution interrogation of functional elements in the noncoding genome. Science. 2016;353(6307):1545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58(4):575–85. doi:10.1016/j.molcel.2015.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, Fernando C, Kauffman RS, Kallend D, Vaishnaw A, Simon A. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. doi:10.1056/NEJMoa1609243.

    Article  CAS  PubMed  Google Scholar 

  12. Qasim W, Amrolia PJ, Samarasinghe S, et al. First clinical application of talen engineered universal CAR19 T cells in B-ALL. Blood. 2015;126(23):2046.

    Google Scholar 

  13. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, Paschon DE, Miller JC, Davidson RJ, Shivak D, Zhou S, Rieders J, Gregory PD, Holmes MC, Rebar EJ, High KA. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126(15):1777–84. doi:10.1182/blood-2014-12-615492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. doi:10.1056/NEJMoa1300662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380–4. doi:10.1038/nature13589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mou H, Moore J, Malonia SK, Li Y, Ozata DM, Hough S, Song CQ, Smith JL, Fischer A, Weng Z, Green MR, Xue W. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc Natl Acad Sci U S A. 2017;114(14):3648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6:20070. doi:10.1038/srep20070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tu Z, Yang W, Yan S, Guo X, Li XJ. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener. 2015;10:35. doi:10.1186/s13024-015-0031-x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108(1):4–20. doi:10.1093/cvr/cvv205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelletier S, Gingras S, Green DR. Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity. 2015;42(1):18–27. doi:10.1016/j.immuni.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai L, Fisher AL, Huang H, Xie Z. CRISPR-mediated genome editing and human diseases. Genes Dis. 2016;3(4):244–51. doi:10.1016/j.gendis.2016.07.003.

    Article  CAS  Google Scholar 

  22. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31. doi:10.1038/nm.3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Collins, FS. Statement on NIH funding of research using gene-editing technologies in human embryos. National Institutes of Health; 2015.

    Google Scholar 

  24. Council of Europe Parliamentary Assembly. 23rd Ordinary Session, Recommendation 934, Strasbourg. Texts of the Council of Europe on bioethical matters. 1982.

    Google Scholar 

  25. Department of Health and Human Services. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules (NIH guidelines). National Institutes of Health; 2016.

    Google Scholar 

  26. United States. President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research. Splicing life: a report on the social and ethical issues of genetic engineering with human beings. Washington, DC: President's Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research; 1982. 126 p.

    Google Scholar 

  27. Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36–8. doi:10.1126/science.aab1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don’t edit the human germ line. Nature. 2015;519(7544):410–1. doi:10.1038/519410a.

    Article  CAS  PubMed  Google Scholar 

  29. Cyranoski D. Ethics of embryo editing divides scientists. Nat News. 2015. http://www.nature.com/news/ethics-of-embryo-editing-divides-scientists-1.17131.

  30. Nuffield Council on Bioethics. Genome editing: an ethical review. 2016.

    Google Scholar 

  31. UNESCO. Universal Declaration on the Human Genome and Human Rights: From Theory to Practice. 1997.

    Google Scholar 

  32. Califf RM, Nalubola R. FDA’s science-based approach to genome edited products. 2017. http://blogs.fda.gov/fdavoice/index.php/2017/01/fdas-science-based-approach-to-genome-edited-products/.

  33. Aderholt RB. H.R.3049—Agriculture, Rural Development, Food and Drug Administration, and Related Agencies Appropriations Act, 2016. 2015. https://www.congress.gov/bill/114th-congress/house-bill/3049.

  34. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilariño M, Parrilla I, Soto DA, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017;168(3):473–486.e15. doi:10.1016/j.cell.2016.12.036.

    Article  CAS  PubMed  Google Scholar 

  35. Simerly C, McFarland D, Castro C, Lin CC, Redinger C, Jacoby E, Mich-Basso J, Orwig K, Mills P, Ahrens E, Navara C, Schatten G. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res. 2011;7(1):28–40. doi:10.1016/j.scr.2011.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mascetti VL, Pedersen RA. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell. 2016;18(1):67–72. doi:10.1016/j.stem.2015.11.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Camporesi S. CRISPR genome editing technologies: bioethics and biopolitics in the UK and US. 2016. https://www.scu.edu/ethics/all-about-ethics/the-ethics-of-crisprcas9-genome-editing/

  38. Ringo A. Understanding deafness: not everyone wants to be ‘Fixed’. The Atlantic. 2013. https://www.theatlantic.com/health/archive/2013/08/understanding-deafness-not-everyone-wants-to-be-fixed/278527/.

  39. Kaiser J. First proposed human test of CRISPR passes initial safety review. Sci Mag News. 2016. http://www.sciencemag.org/news/2016/06/human-crispr-trial-proposed.

  40. Cambridge Public Policy Strategic Research Initiative. Planning for the Future of Gene Editing. University of Cambridge. 2016.

    Google Scholar 

  41. Cohen IG, Daley GQ, Adashi EY. Disruptive reproductive technologies. Sci Transl Med. 2017;9(372) doi:10.1126/scitranslmed.aag2959.

  42. van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J. 2016;30(7):2457–65. doi:10.1096/fj.201500083.

    Article  PubMed  Google Scholar 

  43. Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics. 2015;7:53. doi:10.1186/s13148-015-0085-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9:17. doi:10.1186/s40246-015-0041-3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Waltz E. CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol. 2016;34(6):582. doi:10.1038/nbt0616-582.

    Article  CAS  PubMed  Google Scholar 

  46. Lewens T. Crossing the Germline: or, genome editing meets town planning. Centre for Research in the Arts, Social Sciences and Humanities. 2015. http://www.crassh.cam.ac.uk/blog/post/crossing-the-germline.

  47. Savulescu J, Pugh J, Douglas T, Gyngell C. The moral imperative to continue gene editing research on human embryos. Protein Cell. 2015;6(7):476–9. doi:10.1007/s13238-015-0184-y.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wellcome Trust. Genome editing in human cells—initial joint statement. 2015.

    Google Scholar 

  49. National Academies of Sciences, Engineering and Medicine. Human genome editing: science, ethics, and governance. Washington, DC: The National Academies Press;2017. doi:10.17226/24623.

    Google Scholar 

  50. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363–72. doi:10.1007/s13238-015-0153-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaiser J, Normile D. Chinese paper on embryo engineering splits scientific community. Sci Mag News. 2015. http://www.sciencemag.org/news/2015/04/chinese-paper-embryo-engineering-splits-scientific-community.

  52. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet. 2016;33(5):581–8. doi:10.1007/s10815-016-0710-8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics. 2017;292(3):525–33.

    Article  CAS  PubMed  Google Scholar 

  54. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017.

    Google Scholar 

  55. Lu Y; Sichuan University. PD-1 knockout engineered T cells for metastatic non-small cell lung cancer. In: ClinicalTrials.gov [Internet]. Bethesda, MD: National Library of Medicine (US). 2000 [cited Jan 30, 2017]. https://www.clinicaltrials.gov/ct2/show/NCT02793856?term=crispr&rank=4 NLM Identifier: CT02793856.

  56. Reardon S. First CRISPR clinical trial gets green light from US panel. Nat News. 2016. http://www.nature.com/news/first-crispr-clinical-trial-gets-green-light-from-us-panel-1.20137.

  57. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933–41. doi:10.1038/nbt.3659.

    Article  CAS  PubMed  Google Scholar 

  58. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015;12(9):1385–90. doi:10.1016/j.celrep.2015.07.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther. 2015;26(2):114–26. doi:10.1089/hum.2014.111.

    Article  CAS  PubMed  Google Scholar 

  60. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351(6271):400–3. doi:10.1126/science.aad5725.

    Article  CAS  PubMed  Google Scholar 

  61. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351(6271):403–7. doi:10.1126/science.aad5143.

    Article  CAS  PubMed  Google Scholar 

  62. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351(6271):407–11. doi:10.1126/science.aad5177.

    Article  CAS  PubMed  Google Scholar 

  63. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24(3):556–63. doi:10.1038/mt.2015.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheridan C. CRISPR germline editing reverberates through biotech industry. Nat Biotechnol. 2015;33(5):431–2. doi:10.1038/nbt0515-431.

    Article  CAS  PubMed  Google Scholar 

  65. Keshavan M. Illumina says it can deliver a $100 genome—soon. Stat News. 2017. https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/.

  66. The 100,000 Genomes Project. Genomics England. 2012. https://www.genomicsengland.co.uk/the-100000-genomes-project/.

  67. National Institutes of Health. Help Me Understand Genetics: Precision Medicine. U.S. National Library of Medicine. 2017.

    Google Scholar 

  68. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press (US); 2011.

    Google Scholar 

  69. Swearingen A. Abbvie and GMI announce landmark population genomics alliance. Genomics Medicine Ireland. 2017.

    Google Scholar 

  70. Aviesan. France Médecine Génomique 2025. 2016.

    Google Scholar 

  71. Cyranoski D. China’s bid to be a DNA superpower. Nat News. 2016. http://www.nature.com/news/china-s-bid-to-be-a-dna-superpower-1.20121.

  72. Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017.

    Google Scholar 

  73. Orkin SH. Recent advances in globin research using genome-wide association studies and gene editing. Ann N Y Acad Sci. 2016;1368(1):5–10. doi:10.1111/nyas.13001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Horton R. Mbeki defiant about South African HIV/AIDS strategy. Lancet. 2000;356(9225):225.

    CAS  PubMed  Google Scholar 

  75. Pauwels K, Podevin N, Breyer D, Carroll D, Herman P. Engineering nucleases for gene targeting: safety and regulatory considerations. New Biotechnol. 2014;31(1):18–27. doi:10.1016/j.nbt.2013.07.001.

    Article  CAS  Google Scholar 

  76. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014;42(11):7473–85. doi:10.1093/nar/gku402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Widra EA. The harm of unintended consequences is greater than the fantasy of “designer babies.” Zócalo. 2016. http://www.zocalopublicsquare.org/2016/05/24/will-modern-genetics-turn-us-into-gene-genies/ideas/up-for-discussion/.

  78. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  79. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115(5):488–92. doi:10.1161/CIRCRESAHA.115.304351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol. 2016;36(5):783–6. doi:10.1161/ATVBAHA.116.307227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Strong A, Musunuru K. Genome editing in cardiovascular diseases. Nat Rev Cardiol. 2017;14(1):11–20. doi:10.1038/nrcardio.2016.139.

    Article  CAS  PubMed  Google Scholar 

  82. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72–115. doi:10.1016/j.cpcardiol.2009.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Knoepfler P. A conversation with George Church on genomics & germline human genetic modification. The Niche. 2015. http://www.ipscell.com/2015/03/georgechurchinterview/.

  84. Sterodimas A, Radwanski HN, Pitanguy I. Ethical issues in plastic and reconstructive surgery. Aesthet Plast Surg. 2011;35(2):262–7. doi:10.1007/s00266-011-9674-3.

    Article  Google Scholar 

  85. Generations Ahead. A disability rights analysis of genetic technologies: report on a national convening of disability rights leaders. 2009.

    Google Scholar 

  86. Committee on Science, Technology, and Law, Policy and Global Affairs, National Academies of Sciences, Engineering, and Medicine; Olson S, editor. International summit on human gene editing: a global discussion. Washington, DC: National Academies Press (US); 2016.

    Google Scholar 

  87. Benjamin R. Interrogating equity: a disability justice approach to genetic engineering. Issues Sci Technol. 2016;32(3):51.

    Google Scholar 

  88. Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N. The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci. 2016;7:506. doi:10.3389/fpls.2016.00506.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Selle K, Barrangou R. CRISPR-based technologies and the future of food science. J Food Sci. 2015;80(11):R2367–72. doi:10.1111/1750-3841.13094.

    Article  CAS  PubMed  Google Scholar 

  90. Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015;348(6233):442–4. doi:10.1126/science.aaa5945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles Stephensi. Proc Natl Acad Sci U S A. 2015;112(49):E6736–43. doi:10.1073/pnas.1521077112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sprink T, Eriksson D, Schiemann J, Hartung F. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 2016;35(7):1493–506. doi:10.1007/s00299-016-1990-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient generation of Myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8):e0136690. doi:10.1371/journal.pone.0136690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang Y, Du Y, Shen B, Zhou X, Li J, Liu Y, Wang J, Zhou J, Hu B, Kang N, Gao J, Yu L, Huang X, Wei H. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep. 2015;5:8256. doi:10.1038/srep08256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao Y, Wu H, Wang Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18(1):13. doi:10.1186/s13059-016-1144-4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Maxmen A. Gene-edited animals face US regulatory crackdown. 2017. http://www.nature.com/news/gene-edited-animals-face-us-regulatory-crackdown-1.21331.

  97. Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, Papathanos PA, Nolan T, Windbichler N, Crisanti A. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep. 2016;6:31139. doi:10.1038/srep31139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles Gambiae. Nat Biotechnol. 2016;34(1):78–83. doi:10.1038/nbt.3439.

    Article  CAS  PubMed  Google Scholar 

  99. Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct, Board on Life Sciences, Division on Earth and Life Studies, National Academies of Sciences, Engineering, and Medicine. Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. Washington, DC: National Academies Press (US); 2016.

    Google Scholar 

  100. Pugh J. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies. J Med Ethics. 2016;42(9):578–81. doi:10.1136/medethics-2016-103462.

    Article  PubMed  Google Scholar 

  101. Fang J. Ecology: a world without mosquitoes. Nature. 2010;466(7305):432–4. doi:10.1038/466432a.

    Article  CAS  PubMed  Google Scholar 

  102. Unckless RL, Clark AG, Messer PW. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics. 2016. http://www.genetics.org/content/early/2016/12/09/genetics.116.197285.abstract.

  103. Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW, Malik HS. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 2017;13(7):e1006796.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T, Lightfoot SB, McNamara J, Smidler A, Collins JP. Biotechnology. Regulating gene drives. Science. 2014;345(6197):626–8. doi:10.1126/science.1254287.

    Article  CAS  PubMed  Google Scholar 

  105. Allen G. Florida keys approves trial of genetically modified mosquitoes to fight Zika. NPR. 2016. http://www.npr.org/sections/health-shots/2016/11/20/502717253/florida-keys-approves-trial-of-genetically-modified-mosquitoes-to-fight-zika

  106. Doudna J. Genome-editing revolution: my whirlwind year with CRISPR. Nat News. 2015. http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063.

  107. The Human Fertilisation and Embryology (Mitochondrial Donation) Regulations 2015. The National Archives. 2015. http://www.legislation.gov.uk/uksi/2015/572/contents/made .

  108. Rogelj J, Fricko O, Meinshausen M, Krey V, Zilliacus JJJ, Riahi K. Understanding the origin of Paris Agreement emission uncertainties. Nature Communications. 2017;8:15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Flicker S, Travers R, Guta A, McDonald S, Meagher A. Ethical dilemmas in community-based participatory research: recommendations for institutional review boards. J Urban Health. 2007;84(4):478–93.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Björk BC. Open access to scientific articles: a review of benefits and challenges. Intern Emerg Med. 2017;12(2):247–53. doi:10.1007/s11739-017-1603-2.

    Article  PubMed  Google Scholar 

  111. Dunn AG, Coiera E, Mandl KD. Is Biblioleaks inevitable? J Med Internet Res. 2014;16(4):e112. doi:10.2196/jmir.3331.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Watson M. When will ‘open science’ become simply ‘science’? Genome Biol. 2015;16:101. doi:10.1186/s13059-015-0669-2.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Tennant JP, Waldner F, Jacques DC, Masuzzo P, Collister LB, Hartgerink CH. The academic, economic and societal impacts of open access: an evidence-based review. Version 3 F1000Res. 2016;5:632.

    Article  Google Scholar 

  114. Maggio LA, Moorhead LL, Willinsky JM. Qualitative study of physicians’ varied uses of biomedical research in the USA. BMJ Open. 2016;6(11):e012846. doi:10.1136/bmjopen-2016-012846.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brownell SE, Price JV, Steinman L. Science communication to the general public: why we need to teach undergraduate and graduate students this skill as part of their formal scientific training. J Undergrad Neurosci Educ. 2013;12(1):E6–E10.

    PubMed  PubMed Central  Google Scholar 

  116. Cameron C, Collie CL, Baldwin CD, Bartholomew LK, Palmer JL, Greer M, Chang S. The development of scientific communication skills: a qualitative study of the perceptions of trainees and their mentors. Acad Med. 2013;88(10):1499–506. doi:10.1097/ACM.0b013e3182a34f36.

    Article  PubMed  Google Scholar 

  117. Darzentas N, Goldovsky L, Ouzounis CA, Karapiperis K, Karapiperis C. Science communication media for scientists and the public. EMBO Rep. 2007;8(10):886–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Plutzer E, McCaffrey M, Hannah AL, Rosenau J, Berbeco M, Reid AH. Climate confusion among U.S. teachers. Science. 2016;351(6274):664–5. doi:10.1126/science.aab3907.

    Article  CAS  PubMed  Google Scholar 

  119. Fischhoff B. The sciences of science communication. Proc Natl Acad Sci U S A. 2013;110(Suppl 3):14033–9. doi:10.1073/pnas.1213273110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Genetic Alliance. District of Columbia Department of Health. “Genetic Counseling” in understanding genetics: a district of Columbia guide for patients and health professionals. Washington, DC: Genetic Alliance; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soren H. Hough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hough, S.H., Ajetunmobi, A. (2017). The Future of CRISPR Applications in the Lab, the Clinic and Society. In: Tsang, S. (eds) Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-319-63904-8_9

Download citation

Publish with us

Policies and ethics