Skip to main content

Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds

  • Chapter
  • First Online:
Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 115))

Abstract

In this chapter, we propose an adaptive sliding mode approach based on the extended equivalent control concept to cope with disturbances of unknown bounds in nonlinear systems. Some advantages with respect to previous proposed methods are its simplicity and capability of rejecting non smooth disturbances. Unlike other adaptive approaches, overestimation of the controller gain and the loss of the sliding motion can be avoided. The developed method guarantees ideal sliding modes and alleviates the chattering phenomena. Theoretically, the sliding variable becomes identically null after some finite time in spite the disturbances. Global stability is proved. Simulation results illustrate the potential and limitations of this novel adaptation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baev, S., Shtessel, Y., Shkolnikov, I.: Nonminimum-phase output tracking in causal systems using higher-order sliding modes. Int. J. Robust Nonlinear Control. 18(4–5), 454–467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartolini, G., Levant, A., Plestan, F., Taleb, M., Punta, E.: Adaptation of sliding modes. IMA J. Math. Control. Inf. 30(3), 285–300 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartoszewicz, A.: A new technique to compensate for disturbance in sliding mode control systems. In: Proccedings of 24th Conference IEEE Indutrial Electronics Society, pp. 1708–1711 (1998)

    Google Scholar 

  4. Edwards, C., Shtessel, Y.B.: Adaptive continuous higher order sliding mode control. Automatica 65, 183–190 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Estrada, A., Plestan, F., Allouche, B.: An adaptive version of a second order sliding mode output feedback controller. In: Proccedings of European Control Conference, pp. 3228–3233 (2013)

    Google Scholar 

  6. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  7. Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control. 57(8), 2100–2105 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hsu, L., Costa, R.R.: Adaptive control with sliding modes: theory and applications. In: Minicourse Proceedings XI Congresso Brasileiro de Automática, pp. 39–60 (1996)

    Google Scholar 

  9. Hsu, L., Cunha, J.P.V.S., Costa, R.R., Lizarralde, F.: Multivariable output-feedback sliding mode control. In: Yu, X., Xu, J.X. (eds.) Variable Structure Systems: Towards the 21st Century, pp. 283–313. Springer, Berlin (2002)

    Chapter  Google Scholar 

  10. Hsu, L., Lizarralde, F., Araújo, A.D.: New results on output-feedback variable structure model-reference adaptive control: design and stability analysis. IEEE Trans. Autom. Control. 42(3), 386–393 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  12. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control. 76(9), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Levant, A., Livne, M.: Exact differentiation of signals with unbounded higher derivatives. IEEE Trans. Autom. Control. 57(4), 1076–1080 (2012)

    Article  MathSciNet  Google Scholar 

  14. Moreno, J.A., Negrete, D.Y., Torres-González, V., Fridman, L.: Adaptive continuous twisting algorithm. Int. J. Control. 89(9), 1798–1806 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oliveira, T.R., Cunha, J.P.V.S., Hsu, L.: Adaptive sliding mode control for disturbances with unknown bounds. In: Proccedings of 14\(^{th}\) International Workshop on Variable Structure Systems, pp. 59–64 (2016)

    Google Scholar 

  16. Oliveira, T.R., Estrada, A., Fridman, L.M.: Global exact differentiator based on higher-order sliding modes and dynamic gains for globally stable output-feedback control. In: Proccedings of IEEE Conference on Decision and Control, pp. 4109–4114 (2015)

    Google Scholar 

  17. Oliveira, T.R., Leite, A.C., Peixoto, A.J., Hsu, L.: Overcoming limitations of uncalibrated robotics visual servoing by means of sliding mode control and switching monitoring scheme. Asian J. Control. 16(3), 752–764 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Plestan, F., Shtessel, Y., Brégeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control. 83(9), 1907–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence and Robustness. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  21. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, L., Hsu, L., Xiuxia, S.: A variable structure MRAC with expected transient and steady-state performance. Automatica 42(5), 805–813 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian funding agencies CAPES, CNPq and FAPERJ for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Roux Oliveira .

Editor information

Editors and Affiliations

Appendix

Appendix

To define the concept of input-to-state stability/stable (ISS) [11, Sect. 4.9], consider the system

$$\begin{aligned} \dot{x} = f(x,u,t)\,, \end{aligned}$$
(6.32)

where \(f:{\mathbb {R}}^n\times {\mathbb {R}}^m\times {\mathbb {R}}_+\rightarrow {\mathbb {R}}^n\) is piecewise continuous in t and locally Lipschitz in x and u. The input signal u(t) is piecewise continuous and uniformly bounded. Assume that this system has a globally uniformly asymptotically stable equilibrium point at \(x=0\) when \(u(t)\equiv 0\).

Definition 6.1

The system (6.32) is said to be input-to-state stable (ISS) if there exist a class \({\mathscr {KL}}\) function \(\beta \) and a class \({\mathscr {K}}\) function \(\gamma \) such that for any initial state \(x(t_0)\) and any bounded input signal u(t), the solution x(t) exists \(\forall t\ge t_0\ge 0\) and satisfies

$$\begin{aligned} \Vert x(t)\Vert \le \beta \left( \Vert x(t_0)\Vert ,t-t_0\right) +\gamma \left( \sup _{t_0\le \tau \le t}\Vert u(\tau )\Vert \right) \,. \end{aligned}$$
(6.33)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oliveira, T.R., Cunha, J.P.V.S., Hsu, L. (2018). Adaptive Sliding Mode Control Based on the Extended Equivalent Control Concept for Disturbances with Unknown Bounds. In: Li, S., Yu, X., Fridman, L., Man, Z., Wang, X. (eds) Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications. Studies in Systems, Decision and Control, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-62896-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62896-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62895-0

  • Online ISBN: 978-3-319-62896-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics