Skip to main content

Pain- and Itch-Related Magnetic Fields

  • Living reference work entry
  • First Online:
Magnetoencephalography

Abstract

Pain and itch are unpleasant somatic sensations, and, in particular, severe problems for patients with chronic pain and itch. It is important to understand how these sensations are perceived/modulated in the brain in order to develop treatments for chronic pain and itch. Magnetoencephalography (MEG) can be used to investigate pain- and itch-related cerebral processing with high temporal resolution (ms). Many pain researchers have investigated the temporal profiles of cortical activities evoked by noxious stimuli and discussed how neural signals associated with pain are processed in the brain. In addition, pain modulation by physical and physiological factors has also been of interest for pain researchers and has been investigated to understand the pain modulation system in the brain. Until recently, it was considered impossible to measure itch-related processing in the brain using MEG, because no itch stimulus was shown to be useful for MEG. However, a new stimulus to evoke the itch sensation by applying electrical stimuli to the skin was developed. This electrical method is reproducible and produces a steep rise in the itch sensation and, therefore, it is suitable for MEG recording. A MEG study using electrical itch stimuli demonstrated that the temporal profile of cortical activity evoked by itch stimuli was partly different from that evoked by pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adriaensen H, Gybels J, Handwerker HO, Van Hees J (1983) Response properties of thin myelinated (A-delta) fibers in human skin nerves. J Neurophysiol 49(1):111–122

    Article  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989a) Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62(3):694–710

    Article  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62(3):711–722

    Article  Google Scholar 

  • Andrew D, Craig AD (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4(1):72–77

    Article  Google Scholar 

  • Apkarian AV, Hodge CJ (1989) Primate spinothalamic pathways: II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288(3):474–492

    Article  Google Scholar 

  • Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus. I. Somatic nocicresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14(11 Pt 2):6779–6795

    Article  Google Scholar 

  • Bär KJ, Gaser C, Nenadic I, Sauer H (2002) Transient activation of a somatosensory area in painful hallucinations shown by fMRI. NeuroReport 13:805–808

    Article  Google Scholar 

  • Baumgärtner U, Iannetti GD, Zambreanu L, Stoeter P, Treede RD, Tracey I (2010) Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 104(5):2863–2872

    Article  Google Scholar 

  • Bornhövd K, Quante M, Glauche V, Bromm B, Weiller C, Büchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125(6):1326–1336

    Article  Google Scholar 

  • Chudler EH, Anton F, Dubner R, Kenshalo DR Jr (1990) Responses of nociceptive SI neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63(3):559–569

    Article  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55(4):343–361

    Article  Google Scholar 

  • Darsow U, Drzezga A, Frisch M, Munz F, Weilke F, Bartenstein P, Schwaiger M, Ring J (2000) Processing of histamine-induced itch in the human cerebral cortex: a correlation analysis with dermal reactions. J Invest Dermatol 115(6):1029–1033

    Article  Google Scholar 

  • de Leeuw R, Davis CE, Albuquerque R, Carlson CR, Andersen AH (2006) Brain activity during stimulation of the trigeminal nerve with noxious heat. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(6):750–757

    Article  Google Scholar 

  • Desmedt JE, Cheron G (1980) Central somatosensory conduction in man: neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and earlobes. Electroencephalogr Clin Neurophysiol 50(5–6):382–403

    Article  Google Scholar 

  • Dong WK, Salonen LD, Kawakami Y, Shiwaku T, Kaukoranta EM, Martin RF (1989) Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 484(1–2):314–324

    Article  Google Scholar 

  • Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72(2):542–564

    Article  Google Scholar 

  • Dostrovsky JO, Craig AD (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76(6):3656–3665

    Article  Google Scholar 

  • Drzezga A, Darsow U, Treede RD, Siebner H, Frisch M, Munz F, Weilke F, Ring J, Schwaiger M, Bartenstein P (2001) Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain 92(1–2):295–305

    Article  Google Scholar 

  • Edwards AE, Shellow WV, Wright ET, Dignam TF (1976) Pruritic skin diseases, psychological stress, and the itch sensation. A reliable method for the induction of experimental pruritus. Arch Dermatol 112(3):339–343

    Article  Google Scholar 

  • Emerson NM, Zeidan F, Lobanov OV, Hadsel MS, Martucci KT, Quevedo AS, Starr CJ, Nahman-Averbuch H, Weissman-Fogel I, Granovsky Y, Yarnitsky D, Coghill RC (2014) Pain sensitivity is inversely related to regional Grey matter density in the brain. Pain 155(3):566–573

    Article  Google Scholar 

  • Faymonville ME, Boly M, Laureys S (2006) Functional neuroanatomy of the hypnotic state. J Physiol (Paris) 99(4–6):463–469

    Article  Google Scholar 

  • Forss N, Raij TT, Seppä M, Hari R (2005) Common cortical network for first and second pain. NeuroImage 24(1):132–142

    Article  Google Scholar 

  • Friedman DP, Murray EA (1986) Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252(3):348–373

    Article  Google Scholar 

  • Frot M, Magnin M, Mauguière F, Garcia-Larrea L (2007) Human SII and posterior insula differently encode thermal laser stimuli. Cereb Cortex 17(3):610–620

    Article  Google Scholar 

  • Gardner EP, Kandel ER (2000) Touch. In: Kandek ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New Yrok, pp 451–471

    Google Scholar 

  • Gingold SI, Greenspan JD, Apkarian AV (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308(3):467–490

    Article  Google Scholar 

  • Goffaux P, Girard-Tremblay L, Marchand S, Daigle K, Whittingstall K (2014) Individual differences in pain sensitivity vary as a function of precuneus reactivity. Brain Topogr 27(3):366–374

    Article  Google Scholar 

  • Gross J, Schnitzler A, Timmermann L, Ploner M (2007) Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 5(5):e133

    Article  Google Scholar 

  • Hari R, Kaukoranta E, Reinikainen K, Huopaniemie T, Mauno J (1983) Neuromagnetic localization of cortical activity evoked by painful dental stimulation in man. Neurosci Lett 42(1):77–82

    Article  Google Scholar 

  • Hari R, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734

    Article  Google Scholar 

  • Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J Neurosci 27(35):9270–9277

    Article  Google Scholar 

  • Herde L, Forster C, Strupf M, Handwerker HO (2007) Itch induced by a novel method leads to limbic deactivations a functional MRI study. J Neurophysiol 98(4):2347–2356

    Article  Google Scholar 

  • Huttunen J, Kobal G, Kaukoranta E, Hari R (1986) Cortical responses to painful CO2 stimulation of nasal mucosa; a magnetoencephalographic study in man. Electroencephalogr Clin Neurophysiol 64(4):347–349

    Article  Google Scholar 

  • Hyvärinen J, Poranen A (1978) Receptive field integration and submodality convergence in the hand area of the post-central gyrus of the alert monkey. J Physiol Lond 283:539–556

    Article  Google Scholar 

  • Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett G (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121(5):931–947

    Article  Google Scholar 

  • Ikoma A, Handwerker H, Miyachi Y, Schmelz M (2005) Electrically evoked itch in humans. Pain 113(1–2):148–154

    Article  Google Scholar 

  • Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain 96(3):247–252

    Article  Google Scholar 

  • Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R (2003) Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci 18(10):2859–2866

    Article  Google Scholar 

  • Inui K, Tsuji T, Kakigi R (2006) Temporal analysis of cortical mechanisms for pain relief by tactile stimuli in humans. Cereb Cortex 16(3):355–365

    Article  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1993) Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp Brain Res 92(3):360–368

    Article  Google Scholar 

  • Jackson PL, Brunet E, Meltzoff AN, Decety J (2006) Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia 44(5):752–761

    Article  Google Scholar 

  • Kakigi R, Shibasaki H (1991) Estimation of conduction velocity of the spino-thalamic tract in man. Electroencephalogr Clin Neurophysiol 80(1):39–45

    Article  Google Scholar 

  • Kakigi R, Koyama S, Hoshiyama M, Kitamura Y, Shimojo M, Watanabe S (1995) Pain-related magnetic fields following painful CO2 laser stimulation in man. Neurosci Lett 192(1):45–48

    Article  Google Scholar 

  • Kakigi R, Hoshiyama M, Shimojo M, Naka D, Yamasaki H, Watanabe S, Xiang J, Maeda K, Lam K, Itomi K, Nakamura A (2000) The somatosensory evoked magnetic fields. Prog Neurobiol 61(5):495–523

    Article  Google Scholar 

  • Kakigi R, Tran TD, Qiu Y, Wang X, Nguyen TB, Inui K, Watanabe S, Hoshiyama M (2003) Cerebral responses following stimulation of unmyelinated C-fibers in humans: electro- and magneto-encephalographic study. Neurosci Res 45(3):255–275

    Article  Google Scholar 

  • Kakigi R, Inui K, Tamura Y (2005a) Electrophysiological studies on human pain perception. Clin Neurophysiol 116(4):743–763

    Article  Google Scholar 

  • Kakigi R, Nakata H, Inui K, Hiroe N, Nagata O, Honda M, Tanaka S, Sadato N, Kawakami M (2005b) Intracerebral pain processing in a Yoga master who claims not to feel pain during meditation. Eur J Pain 9(5):581–589

    Article  Google Scholar 

  • Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H (2000) Primary somatosensory cortex is actively involved in pain processing in human. Brain Res 853(2):282–289

    Article  Google Scholar 

  • Kandel ER (2000) From nerve cells to cognition: the internal cellular representation required for perception and action. In: Kandek ER, Schwartz JH, Jessell TM (eds) Principles of neural science. McGraw-Hill, New York, pp 381–403

    Google Scholar 

  • Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50(6):1479–1496

    Article  Google Scholar 

  • Kenshalo DR Jr, Chudler EH, Anton F, Dubner R (1988) SI nociceptive neurons participate in the encoding process by which monkeys perceive the intensity of noxious thermal stimulation. Brain Res 454(1–2):378–382

    Article  Google Scholar 

  • Kenshalo DR, Willis WD (1991) The role of the cerebral cortex in pain sensation. In: Jones EG, Peter A (eds) Cerebral cortex, normal and altered states of function. Plenum, New York, pp 153–212

    Chapter  Google Scholar 

  • Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R (2007) Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97(5):3585–3896

    Article  Google Scholar 

  • Kitada R, Hashimoto T, Kochiyama T, Kito T, Okada T, Matsumura M, Lederman SJ, Sadato N (2005) Tactile estimation of the roughness of gratings yields a graded response in the human brain: an fMRI study. NeuroImage 25(1):90–100

    Article  Google Scholar 

  • Leknes SG, Bantick S, Willis CM, Wilkinson JD, Wise RG, Tracey I (2007) Itch and motivation to scratch: an investigation of the central and peripheral correlates of allergen- and histamine-induced itch in humans. J Neurophysiol 97(1):415–422

    Article  Google Scholar 

  • Lenz FA, Treede RD (2002) Attention, novelty, and pain. Pain 99(1–2):1–3

    Article  Google Scholar 

  • Lockwood PL, Iannetti GD, Haggard P (2013) Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity. Cortex 49(8):2201–2209

    Article  Google Scholar 

  • Magerl W, Ali Z, Ellrich J, Meyer RA, Treede RD (1999) C- and A delta-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82(2):127–137

    Article  Google Scholar 

  • Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104(4):281–289

    Article  Google Scholar 

  • McCarthy G, Wood CC, Allison T (1991) Cortical somatosensory evoked potentials. I. Recordings in the monkey Macaca fascicularis. J Neurophysiol 66(1):53–63

    Article  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  Google Scholar 

  • Mima T, Nagamine T, Nakamura K, Shibasaki S (1998) Attention modulates both primary and secondary somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80(4):2215–2221

    Article  Google Scholar 

  • Mochizuki H, Sadato N, Saitoh D, Toyoda H, Tashiro M, Okamura N, Yanai K (2007) Neural correlates of perceptual difference between itching and pain using functional magnetic resonance imaging. NeuroImage 36(3):706–717. (Erratum: Neuroimage. 2008; 39:911–912)

    Article  Google Scholar 

  • Mochizuki H, Inui K, Yamashiro K, Ootsuru N, Kakigi R (2008) Itching-related somatosensory evoked potentials. Pain 138(3):598–603

    Article  Google Scholar 

  • Mochizuki H, Inui K, Tanabe HC, Akiyama LF, Otsuru N, Yamashiro K, Sasaki A, Nakata H, Sadato N, Kakigi R (2009) Time course of activity in itch-related brain regions: a combined MEG-fMRI study. J Neurophysiol 102(5):2657–2666

    Article  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Tamura Y, Tran TD, Qiu Y, Wang X, Nguyen TB, Kakigi R (2004) Movements modulate cortical activities evoked by noxious stimulation. Pain 107(1–2):91–98

    Article  Google Scholar 

  • Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R (2008) Evoked magnetic fields following noxious laser stimulation of the thigh in humans. NeuroImage 42(2):858–868

    Article  Google Scholar 

  • Nakata H, Sakamoto K, Honda Y, Mochizuki H, Hoshiyama M, Kakigi R (2009) Centrifugal modulation of human LEP components to a task-relevant noxious stimulation triggering voluntary movement. NeuroImage 45(1):129–142

    Article  Google Scholar 

  • Niddam DM, Chan RC, Lee SH, Yeh TC, Hsieh JC (2008) Central representation of hyperalgesia from myofascial trigger point. NeuroImage 39(3):1299–1306

    Article  Google Scholar 

  • Nir RR, Sinai A, Raz E, Sprecher E, Yarnitsky D (2010) Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain Res 1344:77–86

    Article  Google Scholar 

  • Ochsner KN, Zaki J, Hanelin J, Ludlow DH, Knierim K, Ramachandran T, Glover GH, Mackey SC (2008) Your pain or mine? Common and distinct neural systems supporting the perception of pain in self and other. Soc Cogn Affect Neurosci 3(2):144–160

    Article  Google Scholar 

  • Opsommer E, Weiss T, Plaghki L, Miltner WH, Opsommer E, Weiss T, Plaghki L, Miltner WH (2001) Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett 298:41–44. (Erratum: Neurosci Lett 2001; 314:156)

    Article  Google Scholar 

  • Papoiu AD, Coghill RC, Kraft RA, Wang H, Yosipovitch G (2012) A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch. NeuroImage 59(4):3611–3623

    Article  Google Scholar 

  • Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30(5):263–288

    Article  Google Scholar 

  • Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81(6):3100–3104

    Article  Google Scholar 

  • Ploner M, Schmitz F, Freund HJ, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83(3):1770–1776

    Article  Google Scholar 

  • Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A 99(19):12444–12448

    Article  Google Scholar 

  • Powell TPS, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162

    Google Scholar 

  • Qiu Y, Fu Q, Wang X, Tran TD, Inui K, Iwase S, Kakigi R (2003) Microneurographic study of C fiber discharges induced by CO2 laser. Neurosci Lett 353(1):25–28

    Article  Google Scholar 

  • Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R (2004) Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol 115(3):636–646

    Article  Google Scholar 

  • Qiu Y, Noguchi Y, Honda M, Nakata H, Tamura Y, Tanaka S, Sadato N, Wang X, Inui K, Kakigi R (2006) Brain processing of the signals ascending through unmyelinated C fibers in humans: an event-related functional magnetic resonance imaging study. Cereb Cortex 16(9):1289–1295

    Article  Google Scholar 

  • Raz A (2004) Anatomy of attentional networks. Anat Rec B New Anat 281(1):21–36

    Article  MathSciNet  Google Scholar 

  • Schlereth T, Baumgärtner U, Magerl W, Stoeter P, Treede RD (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. NeuroImage 20(1):441–454

    Article  Google Scholar 

  • Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjörk HE (1997) Specific C-receptors for itch in human skin. J Neurosci 17(20):8003–8008

    Article  Google Scholar 

  • Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89(5):2441–2448

    Article  Google Scholar 

  • Schnitzler A, Volkmann J, Enck P, Frieling T, Witte OW, Freund HJ (1999) Different cortical organisation of visceral and somatic sensation in humans. Eur J Neurosci 11(1):305–315

    Article  Google Scholar 

  • Schulz-Stübner S, Krings T, Meister IG, Rex S, Thron A, Rossaint R (2004) Clinical hypnosis modulates functional magnetic resonance imaging signal intensities and pain perception in a thermal stimulation paradigm. Reg Anesth Pain Med 29(6):549–556

    Article  Google Scholar 

  • Shelley WB, Arthur RP (1957) The neurohistology and neurophysiology of the itch sensation in man. AMA Arch Derm 76(3):296–323

    Article  Google Scholar 

  • Stevens RT, London SM, Apkarian AV (1993) Spinothalamocortical projections to the secondary somatosensory cortex (SII) in squirrel monkey. Brain Res 631(2):241–246

    Article  Google Scholar 

  • Sun YG, Zhao ZQ, Meng XL, Yin J, Liu XY, Chen ZF (2009) Cellular basis of itch sensation. Science 325(5947):1531–1534

    Article  Google Scholar 

  • Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86(3):1499–1503

    Article  Google Scholar 

  • Tomioka T, Awaya Y, Nihei K, Sekiyama H, Sawamura S, Hanaoka K (2002) Anesthesia for patients with congenital insensitivity to pain and anhidrosis: a questionnaire study in Japan. Anesth Analg 94(2):271–274

    Google Scholar 

  • Towell AD, Purves AM, Boyd SG (1996) CO2 laser activation of nociceptive and non-nociceptive thermal afferents from hairy and glabrous skin. Pain 66(1):79–86

    Article  Google Scholar 

  • Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22(7):2748–2752

    Article  Google Scholar 

  • Tran TD, Lam K, Hoshiyama M, Kakigi R (2001) A new method for measuring the conduction velocities of Ab-, Ad- and C-fibers following electric and CO2 laser stimulation in humans. Neurosci Lett 301(3):187–190

    Article  Google Scholar 

  • Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R (2002) Conduction velocity of the spinothalamic tract following CO2 laser stimulation of C-fibers in humans. Pain 95(1–2):125–131

    Article  Google Scholar 

  • Tuckett RP (1982) Itch evoked by electrical stimulation of the skin. J Invest Dermatol 79(6):368–373

    Article  Google Scholar 

  • Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109(3):399–408

    Article  Google Scholar 

  • Villemure C, Bushnell MC (2002) Cognitive modulation of pain: how do attention and emotion influence pain processing? Pain 95(3):195–199

    Article  Google Scholar 

  • Wood CC, Cohen D, Cuffin BN, Yarita M, Allison T (1985) Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227(4690):1051–1053

    Article  Google Scholar 

  • Yamasaki H, Kakigi R, Watanabe S, Naka D (1999) Effects of distraction on pain perception: magneto- and electro-encephalographic studies. Brain Res Cogn Brain Res 8(1):73–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Mochizuki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mochizuki, H., Inui, K., Kakigi, R. (2019). Pain- and Itch-Related Magnetic Fields. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics